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5 Outline ASML
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~+» New challenges arise in accuracy and speed to meet demands in 7nm
and beyond

» Accuracy requirements are approaching single nanometer

« Worldwide computing power for OPC has exceeded 10 PFLOPS, on par with
the world’s most powerful supercomputers and incurring substantial cost

* New opportunities enabled by new technologies:
 New data acquisition by fast e-beam metrology systems

 New algorithms for modeling and optimization further empowered by
machine learning and new computing architecture

 New applications in patterning equipments including EUV scanners and
multi-beam mask writers

Public



;H Major trends in semiconductor-enabled computing ASML

_— Public
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Immersive experience

Applications

Moore’s Law

Performance Connectivity

Data = Value Algorithms Cost

Deep Learning

Real-time

Volume



5 Litho cost reduction continues to drive Moore’s Law
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,1 Scaling requires Edge Placement Accuracy improvements ASML
~— ASML has expanded its focus to address the total litho error

e

2005 65nm Node
XT:1400, ArF, NA 0.93
Single Expose, k; 0.43

Device Pattern

d
g
A
— a
L|tho 5
critical =
.. dimension |2
2

2 T\

Reference New Edge Placement
pattern pattern Error budget (EPE)

Scanner

Edge placement errors result from
a combination of Overlay and CD
patterning errors.

>50% of EPE budget

CD: Critical Dimension, OPC: Mask Optical Proximity Correction

2011 28nm Node
NXT:1950i, ArFi, NA 1.35
Single Expose k; 0.28

s.lo 119 @ ‘eqo\g

Holistic Lithography

= Brion Computational Litho & OPC
= YieldStar Optical Metrology
= Scanner Feedback and Control

>75% of EPE budget

4= ASML contribution

Public
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2019 5nm Node
NXT:2000i-NXE:3400 ArFi-EUV
Multiple Patterning k; 0.1 - 0.5

Pattern Fidelity Control

= HMI e-beam metrology & inspection
= YieldStar extension post etch, in-die
= Litho-Etch co-optimisation

>90% of EPE budget

Public



H Holistic Lithography delivering significant customer value asmL

— Litthraphy scanner with advanced control capability Public
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Etch and deposition tools

Computational Optical and e-beam metrology
lithography and metrology
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ﬂ

' Tachyon model products extend model accuracy ASML
— roadmap toward single nanometer e
e Oct 2018

2017 2018 2019 2020 2021

P EPE Roadmap

§ (max EPE) 9 nm 7.5 nm 5nm

o ADI Model accurac

S y 2D: 2.5 nm 2D: 2.2 nm 2D: 1.8 nm 2D: 1.5 nm 2D: 1.2 nm

< (CD 30)

2 Mask enhanced M3D (eM3D) model eM3D model for DUV~ eM3D model for EUV  eM3D model for HINA
-g ~ as for 2D patterns curvilinear masks curvilinear masks EUV
(@]
==
w Post Exposure Higher order EUV PRS 2D Stochastic EUV NTD & novel i i
§ "'C' Bake (PEB) PEB terms (XPEB) (speed up etc) modeling (SEPE) resists HINA EUV resists
T o
f P D_evelopment Surface Tension model & EUV NTD & novel HiNA EUV resists
E .§ Development Shrinkage (PRS+) Physical resist development resists
w = : .
§ Etch Effiz:gé/glliggB?as Physics based etch model
E M{"ON Newron resist model Newron etch model Newron M3D model
using Machine Learning L

eP5-MXP eP5/ePx-MXP
>1,000K CD/EP gauges
~1,000K CD/EP gauges high performance contour based model calibration

Model Calibration with

Massive Metrology

Public



aEnhanced 3D mask model delivers significant accuracy benefits ASML

Public
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Selected DUV patterns:

« 1D (82 gauges)

. 4

2D — A (15 gauges)
2D — B (9 gauges)
2D — C (9 gauges)
Customer (48 gauges)

‘ Patterns |

Rigorous M3D
+ optical model

CD Error

Polygon M3D
+ optical model

.

CD Error

Enhanced M3D
+ optical model

!

Oct

2018

Model Error RMS (nm, compared to Rigorous)

m Polygon m Enhanced

4
3
0,
1 T I o7ot I J59%
0
2D-A 2D-B 2D-C Customer
Model Error Range (nm, compared to Rigorous)
5 = Polygon W Enhanced
4
3 144%
0, 0,
2 13/° 78% 62%
. 173%
0
2D-A 2D-B 2D-C

Customer
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5 High speed e-beam metrology and

CD repro(nm)

large field of view ASML

Excellent precision across large field of view

¥
?1\0

?131

Throughput advantage over CD-SEM

| co-sem | eps 68

= Resolution 1nm 1nm
a | |Current 8 pA 250 pA
c
g) Scan Rate 16 MHz | 100 MHz
O | |Field of view 1um 12 um
=
|_
=
9 12
o
N
=

CD-SEM eP5 eP5

(um FOV) (um FOV) (12um FOV)
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5 Fast e-beam enables massive metrology sampling ASML

Public

— This improves OPC model accuracy and cycle time

e Oct 2018

Model Error Distribution

-25% i
« Systematic error removal .. Model using eP5-MXP___ G

* Random noise reduction _25%

» Pattern types
« Gauge coverage More patterns and more gauges

Model using Model using Model using : I
Baseline metrology fast metrology fast metrology : g | .
(same CD gauges) (3.6x EP gauges)

Image average Contour Gauges

~3 days ~3 hrs

SPIE 2018, Qian Zhao et al — “Massive metrology using fast e-beam technology improves OPC model accuracy by >2x at faster turnaround time” Public



ﬂ Better accuracy of resist models by machine learning

—

——

Accuracy

Stability

Data-driven training based on fitting
spec and wafer measurements

Large volume wafer metrology data,
further enhanced by fast e-beam

Physical driven training using
physics based lithography models

Physical Resist
Shrinkage

Data expansion
through simulated
contours

ASML Machine
Learning model

Takes input from
both wafer data and
physics-based litho
models to achieve
better accuracy
and retain stability

Enabled by fast e-beam metrology and physical based models

Example 1

ASML

Public
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Percentage of patterns within accuracy spec

®Baseline ™ Machine Learning

99%

98%

75%

1D patterns 2D patterns

Example 2

Model Accuracy: Percentage of gauges within spec

m Physical Based NTD  m Machine Learning

98%

Calibration Verification

Public



& Massive metrology data & deep learning models further ASML

— Improve OPC accuracy in customer case Site 12

* Big data improve pattern coverage & enhance model accuracy

* Deep Learning Model has more benefits with big data vs Traditional Model

Model accuracy improvement
with big data

Deep Neural Networks

A

Medium Neural Networks
=4==Deep Learning Model
=== Traditional Model

~16,000 verification gauges
Regular hole patterns

Shallow Neural Networks

Performance

Traditional Machine Learning

0.1

Model Accuracy
(1 / Model Error, 3-sigma, nm-1)

e

Data 0 600 800 1000 2000 8000 16000
Calibration gauge number

Y
o

Public



> Deep learning enables full-chip application of inverse

1x/2x logic <10nm logic

3x/4x logic

2x memory I1x memory

2x memory

SRAF and OPC

CD Accu racCy (through process variations)

Inm

2nm

w
)
3

4nm

5nm

ASML
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Newron

Full-chip
production worthiness

Newron
Deep Learning SRAF
>

Freeform OPC
Main + SRAF

ain and SRAF
0-optimization

-

For local enhancement (repair)
used with Flexible Mask Optimization (FMO)

Runtime prohibitive

OPC

Rule based

SRAF

Main feature
OPC

0.01x 0.1x

0.5x 1x Speed

« J
Y

Production tape-out TAT requirement

Public



~ " Current SRAF placement methods

==

Rule-based

Development

« Time consuming and labor
intensive work with trial and error.

* Very fast computation time.
Complex 2D layout is a challenge.

Use case

Full chip application, best for simple
or 1D pattern.

~———Targeting different development cost and use scenarios

Model-based (SGM)

Development

* SRAF Guidance Map (SGM) uses
gradient-based map calculation
method.

« Efficient computation time.

Use case

Full chip application when rule is not
good enough.

ASML
Model-based (CTM) "
e — | —————

« Many iterations to optimize
Continuous Transmission
Mask (CTM) for SRAF
extraction.

» Long computation time.

Use case

Clip based or local repair, key

engine for Brion’s inverse

lithography solution (Tachyon SMO

and iOPCQ). Public



1 DCNN for SRAF placement ASML

Public

Speed up the most accurate SRAF placement method (CTM) Side 15

Oct 2018

SRAF SRAF
Clean-up Extraction

Mask Image Image-Based Mask Optimization




5 DCNN for SRAF placement: supervised learning ASML

— DCNN is trained using sample target and mask images e
- Oct 2018
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5 Training a Machine Learning SRAF model

Training Pattern
Selection

Full chip layout

O\EM(ON SRAF model

Deep convolutional neural network

ASML
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»
! Deep learning assisted SRAF litho performance ASML

Public

— + Contact holes through pitch (CD: 54nm, Pitch: 127nm to 700nm) Sle 19
Runtime
200
Ground truth CTM Direct predict - SRAF 150
————— _ E oX
o 100
f N
s 50
S ]
127nm 254nm 318nm CT™M ML-SRAF

Overlap PW Comparison

382 nm 446nm 510nm

573 nm 637nm 700nm

- = =
i 8 8§ F B OB OE

T T T T T T T T T
-140 -120 -100 -80 -60 -40 -20 0 20
Focus[nm]
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ﬂ Comparison of PV band distribution @ coosnrounomies T ASML
Nominal Condition (NC) OPC with different SRAF generations (uble
« Design: Advanced node contact layer, 6.5 mm? )

« Lithography model: ArFi FlexRay, bright field
 SRAF by SGM/CTM/Newron + nominal condition OPC
« Maximal PV band from wide PW conditions
1D (CD) 1D slot (CD) Line-end (EPE)
1200000 A A - SGM 600000 N — A —
o \ / —c™ | / \—fﬁkﬂlI e \ iy
800000 \ \ 400000 /\ l \ o /\I \
600000 R \—\ 300000 //\l J0000% m \
400000 II \ \ 200000 /R 2000000 I l \
200002 / | \GN | 100002 J_/ \ | ’ j I \ |

-200000 -

-100000 -

Statistically, Newron SRAF PV band is smaller than SGM

Newron SRAF follows what it learned from CTM

Public



H

|

RS-

Runtime and memory
Full Chip OPC job with SRAF generation and Process Window OPC

Normalized Leaf CPU time
(=] = =] w = w [=1] ~
1

Total OPC Runtime

eedup

Newron

& GLOBALFOUNDRIES

5000

4000

3000

2000

1000

Leaf Memory (MB)

4312 4284

Newron

ASML
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Newron SRAF OPC job is 3.4x faster than CTM in runtime and uses only 9% more memory

than baseline SGM.



>

— 32% improvement in DOF

MO
Freeform
OPC
Baseline
Freeform (MO)
OPC

Necking observed with MO is not
seen with Freeform OPC

[SPIE 2018] Sam Liu, “ Freeform mask optimization using
advanced image based M3D inverse lithography and 3D-
NAND full chip OPC application”

Wafer validation of Freeform OPC+ on 3D-NAND via layer ASML

Public
Slide 21
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Simulation Wafer
DOF @ 5% EL | DOF @5% EL

136nm 118nm
A A
32% 32%
I I
103nm 89nm
20_ Baseline
15_\ i Inverse Mask
101
|  DOF=89nm@ 5% EL
51  DOF =118 nm @ 5% EL
0
0 20 40 a0 80 100 120 Public



Conventional OPC

with MB-SRAF
Insuffiecient accuracy but
meets runtime requirements

Freeform OPC+
Best accuracy but too slow
for full chip

Newron Freeform OPC+
Trained with Inverse on selected patterns

ML

Predictian

\BEDOF 116nm S

Significant
speed-up!

/BEDOF 110nm Ees
HioEL 5%

DOF 84nm
@ EL 8%

Significant
speed-up!




ﬂNewron Freeform OPC+ improves ILS and PV Bands,
— reducing total EPE

3500

3000

2500

2000

1500

1000

500

28

ILS Histogram for EUV Test case

(Showing low ILS locations only) 1400

emmmnReg OPC  emmmmFreeform OPC+  esss==Newron Freeform OPC+

1200
1000
Histogram shifts right 800

- 6% improvement
in min ILS 600
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Octo

PV Band Histogram for EUV Test case

emmnReg OPC  emmmmmFreeform OPC+  essss=Newron Freeform OPC+

Histogram shifts left
- 20% improvement
in avg PV Bands

|

09 11 13 15 1.7 19 21 23 25 2.7 29 31 33 35 3.7

ASML

Slide 23
38,2018

Public




-
=
A
=

istency

IMProves image cons

'Newron Freeform OPC+

o <
= N
Q2 o
Sz
a3

o0
bt
o
N
o0
=1
I
@
RS
[e]
£
O
o

t—r“’l

t—r“’l

Public

improvement in

46%

istency

CcConslIs

(@)
AN
—
5 Q
[ 1
o
+—
)]
|01 3 35 3 3 3
— 0] “’fl\\\“\'luff
i I =201 )=t
‘\)i,fr\\,.\,
 HESHARN r R MI
— . -n]-n 8
| s HUIE M Sl B4 5
.I(\.\\Il«f
—-]6 - . -n o
s\’lalf\\..\
i B | <
|| _\-_J..:It..\_z
| SN S O Y
L LTINS
H H 3 3 &

pred std

Std = 0.0065

N
\l
)

(A

(10
)

()&
DN,

(..
)=l
i

Freeform BN

NI
P

)

N

7N
',

~

I
400

N
s,

g

S
)

7
t
N

300

0

[ ",'r;'\\
DI
200

s,

i
i\

Y
)

SN
(R
(YO}
N
)
s,

()
5

)
100

Py )
5] =
—ln\.
&)

\

Freeform
Learning



ﬁ

Conventional

5| U5t

O TVTO

VSB with conventional
fracturing

Mask type (DUV)

Stair-cased Curvilinear
=

In Hours per Full Field

| Curvilinear masks can be made using VSB or MBMW ASML

Public
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Curvilinear . .
0o Y @) | ﬁrocess window comparlsom
Conventional mask: DOF=96 nm @ 5% EL

In Hours per Full Field In Hours per Full Field

Curvilinear mask: DOF=112 nm @ 5% EL

Deita Defoc:

us(nm)

VSB with freeform
fracturing

MBMW

Spence et al., “Manufacturing
challenges for curvilinear

Conventional mask 12.6 - 12.4 ( 30 v/lum?) masks” Proc. SPIE 10451
Stair-cased curvilinear mask 95.0 - 12.4 (169 v/um?) Photomask Technology, 1045104
Curvilinear mask 757 79 12.4 (164 v/ium?)

Public




ﬂ Leverage confluence of new technologies to meet OPC  ASML

Public

— technology and cost requirements siae o

ASML
(inteD)

inverse OPC (CTM+) Inverse with phase control
Deep Learning Inverse Hardware Accel. (tentative)

Inverse OPC
(CTM) Intel DL Boost

| GinteD - (inteD) - (inteD |
= XEON' XEON' XEON' || 14> 10nm ||l XEON'
Intel® Xeon® Processor PLATINUM PLATINUM PLATINUM

ESv4

Cascade Lake Cooper Lake

Intel" Xeon® =
@ Scalable processor H
with integrated z

Nervana

FPGA Sprmg Crest
NVIDIA. Qscal Qlta Qrmg @&ext Gen?
VSB Eeckngin Multi-beam Essctron g.
L - G Mask making

Mask writer < ;""; i?) w" ' Mask infrastructure is ready

. - D) e @l Opjoctve o . . H
& inspection e <~ inspection for inverse OPC &

P gl 7, < ?5‘8'3"""‘ available curvi-linear masks

Multi-beam Mask Writer available Public



’1 Data, algorithms, and applications for patterning solutions asmL

— Litthraphy scanner with advanced control capability Public
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. B App”cations .- Etch and deposition tools
Mask, Litho, & Etch
Pattern Fidelity Contro,
Algorithms
Physical Models,
Inverse Optimization,
. PR, Machine Learning (M)fel:)l;igngtfab
<
L
Computational Optical and e-beam metrology

lithography and metrology
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