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Outline

• New challenges arise in accuracy and speed to meet demands in 7nm 

and beyond

• Accuracy requirements are approaching single nanometer

• Worldwide computing power for OPC has exceeded 10 PFLOPS, on par with 

the world’s most powerful supercomputers and incurring substantial cost

• New opportunities enabled by new technologies: 

• New data acquisition by fast e-beam metrology systems

• New algorithms for modeling and optimization further empowered by 

machine learning and new computing architecture

• New applications in patterning equipments including EUV scanners and 

multi-beam mask writers

Oct 2018
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Moore’s Law

Performance

Cost Data

Applications

Algorithms

Major trends in semiconductor-enabled computing 
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Immersive experience

Autonomous decisions

Connectivity

Real-time

Volume

Data  Value

Oct 2018

Deep Learning
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Litho cost reduction continues to drive Moore’s Law
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NXE:3400

Res. 13nm

300mm 125wph 
NXT:1950i

Res 38nm, 

300mm 190wph

XT:1400

Resolution 65nm

300mm 145wph

High NA EUV

Res. <8nm

300mm 185wph

AT:850

Res. 110nm

300mm 102wph

PAS 5500/60

Res. 450nm 

200mm 48wph

PAS 2500/10

Res. 900nm, 

150mm 66wph 
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2019 5nm Node
NXT:2000i-NXE:3400 ArFi-EUV

Multiple Patterning k1 0.1 - 0.5

Oct 2018
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Scaling requires Edge Placement Accuracy improvements
ASML has expanded its focus to address the total litho error 

CD: Critical Dimension, OPC: Mask Optical Proximity Correction

2005 65nm Node
XT:1400, ArF, NA 0.93

Single Expose, k1 0.43

Scanner

>50% of EPE budget

2011 28nm Node
NXT:1950i, ArFi, NA 1.35

Single Expose k1 0.28

Holistic Lithography 

▪ Brion Computational Litho & OPC 

▪ YieldStar Optical Metrology

▪ Scanner Feedback and Control

>75% of EPE budget

EPEEPE

Pattern Fidelity Control  

▪ HMI e-beam metrology & inspection

▪ YieldStar extension post etch, in-die

▪ Litho-Etch co-optimisation

>90% of EPE budget

EPE

ASML contribution

Device Pattern

Edge placement errors result from 

a combination of Overlay and CD 

patterning errors.
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Computational 

lithography and metrology

Optical and e-beam metrology
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Lithography scanner with advanced control capability 

Etch and deposition tools

Data

Applications

Algorithms

Holistic Lithography delivering significant customer value
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Higher order 
PEB terms (xPEB)

Tachyon model products extend model accuracy 

roadmap toward single nanometer
2017 2018 2019 2020 2021 

ADI Model accuracy 

(CD 3s)A
c

c
u

ra
c

y

9 nm 7.5 nm 5 nm
EPE Roadmap 

(max EPE)
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Post Exposure 

Bake (PEB)

Mask

Development
Development 

Shrinkage (PRS+)

Etch

eP5-MXP

~1,000K CD/EP gauges

eP5/ePx-MXP
>1,000K CD/EP gauges 

high performance contour based model calibration

Effective Etch Bias 
Model (EEB) Physics based etch model

Model Calibration with 

Massive Metrology

Oct 2018
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eM3D model for DUV  

curvilinear masks

eM3D model for EUV  

curvilinear masks
enhanced M3D (eM3D) model 

for 2D patterns

Newron resist model Newron etch model Newron M3D model
Newron Models

using Machine Learning

EUV PRS

(speed up etc)

2D Stochastic 

modeling (SEPE)
EUV NTD & novel 

resists

eM3D model for HiNA

EUV

HiNA EUV resists

EUV NTD & novel 

resists
HiNA EUV resistsSurface Tension model & 

Physical resist development 
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Enhanced 3D mask model delivers significant accuracy benefits

Oct 2018
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Rigorous M3D 

+ optical model

Polygon M3D 

+ optical model

Patterns

CD Error

Enhanced M3D 

+ optical model

CD Error

Selected DUV patterns:

• 1D (82 gauges)

• 2D – A (15 gauges)

• 2D – B (9 gauges)

• 2D – C (9 gauges)

• Customer (48 gauges)
0
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1D 2D - A 2D - B 2D - C Customer

Polygon Enhanced

Model Error RMS (nm, compared to Rigorous)

0
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1D 2D - A 2D - B 2D - C Customer

Polygon Enhanced

Model Error Range (nm, compared to Rigorous)

73%
67%

68%

59%
10%

78%
73%

62%

44%

13%
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CD-SEM 
Field of View
(1um x 1um)
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High speed e-beam metrology and large field of view

1

12

68

CD-SEM
(1um FOV)

eP5
(1um FOV)

eP5
(12um FOV)

eP5 Field of View

(12um x 12um)

CD-SEM eP5

Resolution 1 nm 1 nm

Current 8 pA 250 pA

Scan Rate 16 MHz 100 MHz

Field of view 1 um 12 um

Excellent precision across large field of view
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Throughput advantage over CD-SEM

#1 #3#2

#4 #6#5

#7 #9#8
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Fast e-beam enables massive metrology sampling 
This improves OPC model accuracy and cycle time

Model using 

Baseline metrology
Model using 

fast metrology

(same CD gauges)

Model using 

fast metrology
(3.6x EP gauges)

Model using eP5-MXP

Model using baseline metrology

More patterns and more gauges

Image average Contour Gauges

~3 hrs~3 days

-55%
• Systematic error removal
• Random noise reduction

-25%
• Pattern types
• Gauge coverage

SPIE 2018, Qian Zhao et al – “Massive metrology using fast e-beam technology improves OPC model accuracy by >2x at faster turnaround time”

Oct 2018
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Better accuracy of resist models by machine learning

Large volume wafer metrology data, 

further enhanced by fast e-beam

Data-driven training based on fitting 

spec and wafer measurements

Physical driven training using 

physics based lithography models

Physical Resist 

Shrinkage

Data expansion 

through simulated 

contours
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Enabled by fast e-beam metrology and physical based models

ASML Machine 

Learning model 

Takes input from 

both wafer data and 

physics-based litho

models to achieve 

better accuracy

and retain stability

Example 1

Example 2

Oct 2018
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Massive metrology data & deep learning models further 

improve OPC accuracy in customer case  

• Big data improve pattern coverage & enhance model accuracy

• Deep Learning Model has more benefits with big data vs Traditional Model 

Calibration gauge number
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Deep Learning Model
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~16,000 verification gauges
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Model accuracy improvement 

with big data
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Speed

CD Accuracy (through process variations)

0.01x                                                               0.1x                          0.5x        1x

Inverse Freeform

Inverse OPC

Rule based 

SRAF

Newron

SRAFInverse SRAF

Full-chip 
production worthiness

Main + SRAF

For local enhancement (repair) 
used with Flexible Mask Optimization (FMO)

Runtime prohibitive

Newron

Freeform OPC
(Main + SRAF)

Model based 

SRAF

Main feature 

OPC

Main feature 

OPC

Main and SRAF 

Co-optimization

Main feature 

OPC

Production tape-out TAT requirement
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1nm

Deep learning enables full-chip application of inverse 

SRAF and OPC

Deep Learning

Deep Learning
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Current SRAF placement methods

Rule-based                Model-based (SGM)             Model-based (CTM)

Targeting different development cost and use scenarios

Development 

• Time consuming and labor 

intensive  work with trial and error. 

• Very fast computation time. 

Complex 2D layout is a challenge. 

Use case

Full chip application,  best for simple 

or 1D pattern. 

Development 

• SRAF Guidance Map (SGM) uses 

gradient-based map calculation 

method.

• Efficient computation time. 

Use case

Full chip application when rule is not 

good enough. 

Development 

• Many iterations to optimize 

Continuous Transmission 

Mask (CTM) for SRAF 

extraction.

• Long computation time. 

Use case

Clip based or local repair, key 

engine for Brion’s inverse 

lithography solution (Tachyon SMO 

and iOPC).
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DCNN for SRAF placement
Speed up the most accurate SRAF placement method (CTM)

TargetImage-Based Mask OptimizationMask Image
SRAF 

Extraction

SRAF 

Clean-up
OPC

Oct 2018



Public

Slide 16

Public

DCNN for SRAF placement: supervised learning
DCNN is trained using sample target and mask images

Oct 2018

back propcost function 

(mask pixel diff)
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Training input

SRAF model

Training a Machine Learning SRAF model
Full chip layout

ML training

Wafer 

target 

images

Training Pattern 

Selection

Training clips

…

…

…
Deep convolutional neural network

CTM mask 

images

Public
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Deep learning assisted SRAF litho performance

• Contact holes through pitch  (CD: 54nm, Pitch: 127nm to 700nm)
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CTM ML-SRAF

Runtime

Overlap PW Comparison

Ground truth CTM Direct predict - SRAF

127nm 254nm 318nm

382 nm 446nm 510nm

573 nm 637nm 700nm

5X

Oct 2018



Public

Comparison of PV band distribution

• Design: Advanced node contact layer, 6.5 mm2

• Lithography model: ArFi FlexRay, bright field

• SRAF by SGM/CTM/Newron + nominal condition OPC

• Maximal PV band from wide PW conditions

Nominal Condition (NC) OPC with different SRAF generations

1D (CD) 1D slot (CD) Line-end (EPE)

Statistically, Newron SRAF PV band is smaller than SGM

Newron SRAF follows what it learned from CTM

SGM

CTM

Newron

SGM

CTM

Newron

SGM

CTM

Newron

Slide 19
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Runtime and memory
Full Chip OPC job with SRAF generation and Process Window OPC

Newron SRAF OPC job is 3.4x faster than CTM in runtime and uses only 9% more memory 

than baseline SGM. 

3.4x speedup
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Simulation

DOF @ 5% EL

Wafer

DOF @5% EL

Freeform 

OPC

136nm 118nm

Baseline 

(MO) 103nm 89nm
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Wafer validation of Freeform OPC+ on 3D-NAND via layer
32% improvement in DOF

October 18, 2018

MO 

Freeform 

OPC

32%

Necking observed with MO is not 

seen with Freeform OPC

32%

Inverse Mask
Baseline

DOF = 89 nm @ 5% EL

DOF = 118 nm @ 5% EL 32%
[SPIE 2018] Sam Liu, “ Freeform mask optimization using 

advanced image based M3D inverse lithography and 3D-

NAND full chip OPC application”
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Freeform OPC+ delivers accuracy of inverse OPC to full chip
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Newron Freeform OPC+  
Trained with Inverse on selected patterns

.…
…

Freeform OPC+
Best accuracy but too slow 

for full chip

Conventional OPC 

with MB-SRAF
Insuffiecient accuracy but 

meets runtime requirements

DOF 116nm 

@ EL 5%

DOF 110nm 

@ EL 5%

ML 

Prediction

DOF 82nm  

@ EL 5%

October 18, 2018

DOF 84nm  

@ EL 8%

DOF 100nm 

@ EL 8%

DOF 98nm  

@ EL 8%

Significant 

speed-up!

Significant 

speed-up!

DUV Test case EUV Test case
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Newron Freeform OPC+ improves ILS and PV Bands, 

reducing total EPE 
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ILS Histogram for EUV Test case
(Showing low ILS locations only)

Reg OPC Freeform OPC+ Newron Freeform OPC+
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PV Band Histogram for EUV Test case  

Reg OPC Freeform OPC+ Newron Freeform OPC+

Histogram shifts left

 20% improvement 

in avg PV Bands
Histogram shifts right

 6% improvement 

in min ILS
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Newron Freeform OPC+ improves image consistency

Freeform 

OPC 
Deep 

Learning

Freeform 

OPC
Ground 

Truth

Std = 0.0120

Std = 0.0065

46% improvement in 

consistency
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Curvilinear masks can be made using VSB or MBMW

Oct 2018
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Process window comparison

Mask type (DUV)
VSB with conventional 

fracturing

VSB with freeform 

fracturing
MBMW

In Hours per Full Field In Hours per Full Field In Hours per Full Field

Conventional mask 12.6 - 12.4 (  30 v/um2)

Stair-cased curvilinear mask 95.0 - 12.4 (169 v/um2)

Curvilinear mask 757 79 12.4 (164 v/um2)

Spence et al., “Manufacturing 

challenges for curvilinear 

masks”, Proc. SPIE 10451, 

Photomask Technology, 1045104
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Leverage confluence of new technologies to meet OPC 

technology and cost requirements

Mask writer 

& inspection

Multi-beam Mask Writer available

Mask 

inspection 

available

Mask making 

infrastructure is ready 

for inverse OPC & 

curvi-linear masks

VoltaPascal

2016 2017 2018 2019 2020 2021

Inverse OPC 
(CTM)

Inverse OPC (CTM+)
Deep Learning Inverse

Inverse with phase control
Hardware Accel. (tentative)

Turing

Cascade Lake Cooper Lake Skylake Ice Lake 

14  10 nm

Intel DL Boost

Spring Crest 

Next Gen?
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Computational 

lithography and metrology

Optical and e-beam metrology
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Data, algorithms, and applications for patterning solutions

Slide 27
Lithography scanner with advanced control capability 

Etch and deposition tools

Data
Fast SEM (eP5), 

SEM data processing 

(MXP), other fab

equipment

Algorithms
Physical Models,

Inverse Optimization, 

Machine Learning

Applications
Mask, Litho, & Etch

Pattern Fidelity Control
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