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Guest Editorial: Special Issue on CAD Technologies  

Moore’s Law has been a major driving force for 

the exponential growth in the semiconductor 

industry for nearly the past six decades, regularly 

doubling the number of transistors on a chip and 

increasing performance twofold approximately every 

two years. In recent years, there have been position 

papers predicting the imminent demise of Moore’s 

Law as many physical limits are reached, mainly as a 

result of decades of aggressive technology scaling, 

lithography, non-scaling interconnection with 

technology nodes, random and systematic process 

variabilities, and more. Yet, the global 

semiconductor market size reached USD 513 billion 

in 2019 and is projected to reach USD 727 billion by 

2027 on a CAGR of 4.7%. This projected growth can 

be attributed to the increasing consumption of 

consumer electronic devices globally as well as the 

emergence of big data, artificial intelligence, 

machine learning, internet of things, and 5G that 

provide tremendous new opportunities to the market 

growth. To sustain the semiconductor industry’s 

continued growth, however, the continuation of 

Moore’s Law or its variants must be realized which 

in turn requires unprecedented parallel R&D efforts 

on novel transistor architecture, new materials, 

efficient computational lithography, design and 

technology co-optimization, advanced packaging, 

and effective manufacturing yield improvement, etc.  

Facing the ever more complex and challenging 

development of process technologies in the 

nanometer regime, advanced computer-aided design 

(CAD) technologies have become indispensable 

enablers for early pathfinding, transistor and backend 

definition and optimization, design & technology co-

optimization for performance-power-area and 

reducing the risk in re-design, novel material 

exploration, lithography and OPC development, 

defect detection and yield improvement, etc. It is our 

great pleasure to present this special issue of the 

Journal of Microelectronic Manufacturing on “CAD 

Technologies Enabling Advanced Process 

Technology Development and Product Design.” This 

issue contains nine invited papers authored by 

distinguished scholars and researchers from leading 

universities, research institutes, and the industry. The 

topics covered include: (a) an industry-standard 

physical Spice model for FinFET to Gate-All-

Around FET; (b) three Technology CAD (TCAD) 

device simulation papers discussing the Scharfetter-

Gummel discretization scheme in solving the drift-

diffusion transport model, an advanced open-source 

TCAD simulation platform, and a 1st principle-based 

TCAD simulation applied to the design of tunnel 

FET; (c) two papers on computational lithography 

and OPC utilizing machine learning; (d) one paper 

on TCAD-based methodology to enable design-

technology co-optimization of advanced 

semiconductor memories including a multi-stage 

simulation flow to study the device-to-circuit 

performance in presence of statistical and process 

variability; (e) one paper on applications involving a 

complex set of material modeling tools and 

methodologies and share a perspective of the future 

of the area; and (f) one paper on a comprehensive 

pattern centric platform for process technology 

development and manufacturing.   

We would like to express our sincerest gratitude 

to the authors for their gracious and insightful 

responses to our invitation to contribute to this 

special issue of JoMM. We sincerely appreciate their 

time, effort and support. Also, we would like to 

thank all the reviewers for their meticulous review 

and expert suggestions.   
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BSIM-CMG Compact Model for IC CAD: from FinFET to  

Gate-All-Around FET Technology 
 

Avirup Dasgupta * and Chenming Hu ** 

Department of Electrical Engineering and Computer Science, University of California, Berkeley, 

CA 94720, USA. 

Abstract: We discuss the BSIM-CMG compact model for SPICE simulations of any common 

multi-gate (CMG) device. This is an industry standard model which has been used extensively for 

FinFETs IC design and simulation, and has now been extended to accurately model gate-all-

around FET (GAAFET). We present the core framework of BSIM-CMG and discuss the latest 

updates that capture various physical phenomena originating from the quantum confinement of 

electrons by the small cross section of the GAAFET channel. Special attention is paid to providing 

suitable model parameters that can be adjusted using software tools to match the model with 

manufactured transistors very accurately. Furthermore, the model’s speed allows the use of Monte 

Carlo circuit simulation to account for random device variations encountered in manufacturing. 

This model is the industry standard compact model for GAAFETs and will help bridge the wide 

divide between GAA IC manufacturing and design, starting at 3nm/2nm technologies. 

Keywords: Gate-all-around, GAAFET, FinFET, BSIM, BSIM-CMG, Compact model, Quantum, 

Nanosheet,3D, Transistor. 
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1. Introduction 

Semiconductor devices have continuously 

improved over the past few decades in terms of 

density, performance and power consumption. This 

has been brought about mainly by scaling of 

transistors [1,2]. One of the most significant events for 

the semiconductor industry was the shift to FinFETs 

[1,2]. The design of these devices allows a gate on 

three sides of the channel resulting in greater gate 

control. This is of utmost importance to negate the 

side-effects of scaling (short channel effects). 

Moreover, the 3D vertical structure reduces the area 

requirement and allows further increase of the circuit 

density.  

To continue scaling further, we require even 

greater gate control. The next logical step after 

FinFETs is to have gate on all sides of the channel; 

giving rise to the Gate-All-Around FET (GAAFET), 

as shown in Figure 1 [3-6]. Several companies have 

recently announced the use of GAAFETs for 

production design [3-10]. This device not only provides 

excellent gate control, but also utilizes a vertical 

structure with multiple channels per fin to reduce the 

footprint even further [7]. 

Designing circuits with such devices requires a 

compact model for SPICE simulators. The device 

model is a set of equations that describe the device 

behavior and can be evaluated very fast so that very 

large circuits can be simulated while being able to 

reproduce the very complex transistor characteristics 

accurately. It needs to be accurate to avoid expensive 

re-designs, very fast to enable timely simulation of 

large circuits as well as robust to ensure convergence 

for a wide range of complex circuits and simulation 

conditions [2]. BSIM-CMG is the industry standard 

models for common-multi-gate (CMG) devices like 

FinFETs and GAAFETs. The model can accurately 

simulate double gate, triple gate, quadruple gate and 

gate-all-around structures of any geometry including 

commercial FinFET and GAAFET devices. 

In this paper, we will provide an overview of 

the BSIM-CMG compact model with special 

emphasis on GAAFETs. 

2. BSIM-CMG Core Framework 

The BSIM-CMG model is a compact (SPICE) 

model for common-multi-gate devices [2]. It is based 

on a core model which calculates the device 

electrostatics and transport using a long-channel 

assumption. Physical effects like short channel 

effects, leakage currents, non-quasi-static effects, 

noise etc., are added on top of the core model as 

demonstrated in Figure 2. 

The core electrostatics is based on the Poisson 

https://doi.org/10.33079/jomm.20030402
mailto:avirup@berkeley.edu
mailto:hu@eecs.berkeley.edu
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Figure 1. (a) Graphical representation of FinFET and GAAFET. The GAAFET structure. (b) GAAFET cross-

section used for band-structure TCAD simulations; illustrating the width (WSi), thickness (TSi) and the corner 

radius (rc). 

 

 

Figure 2. An illustration of the BSIM-CMG compact model framework. 

 

equation with several approximations. The core 

equation can be given as [2,15] 

0
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In these equations, q is the electronic charge, ni is the 

intrinsic carrier concentration, vT is the thermal 

voltage, /G G Tv V v=  is the normalized gate voltage, 

and /ch ch Tv V v=  is the normalized channel voltage. 

Also, /m m T insq Q v C=  with Qm denoting the mobile 

charge density and  /dep ch ch T insq qN A v C= −  is the 

normalized depletion charge density. The term rN is 

defined as /Fin ins ch effNr A C W= ，where ϵch is the 

permittivity of the channel and AFin is the area of the 

fin. The term Δqdep accounts for the effect of body 

bias for FinFETs fabricated over bulk substrates. 

This term is defined as [15] 

2 ln 2 ln ,
2

ch ch

T cd h T

T

ep

i i

N N
v Vq v

v n n




    
 = − − −   
     

 

(4) 

where   is the body-effect parameter and ni is the 

intrinsic carrier concentration. 

This model is valid for any cross-section shape 

and depends only on four terms: (i) Ach, denoting the 

area of cross-section the channel i.e. the area of the 

blue region in Figure 1(b), (ii) Weff, denoting the 

effective width of the channel for carrier transport, 

i.e., the perimeter of the blue region in Figure 1(b), 

(iii) Nch, representing the doping in the channel, and 

(iv) Cins, representing the insulator capacitance per 

unit length, i.e. the capacitance of the yellow region 

in Figure 1(b), assuming the length (into the paper) 

is unity. Table 1 provides some examples of 

calculating these four terms. 
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Table 1. Model parameter examples. R denotes the radius of cylindrical nanowire. HFin and TFin are the height 

and thickness of fin, and rc is the radius of curvature of corners in GAAFETs. 

 Double-gate Tri-gate Cylindrical nanowire GAAFET/Nanosheet 

Weff 2 FinH  2Fin FinT H+  2 R  2( ) (2 8)Si Si cW T r+ + −  

Ach 
Fin FinH T  

Fin FinH T  2R  
2( 4)Si Si cW T r+ −  

Cins 2 ins

ins

FinH
T

 
ins

ins

effW
T

 
( )2 / ln 1 /ins insT R +  ins

ins

effW
T

 

Nch Channel doping Channel doping Channel doping Channel doping 

 

In Equation (1), the three terms on the right 

hand side define the behavior of the charge density 

in the channel. The linear term dominates in strong 

inversion, the second term dictates weak-inversion 

and the third is for the moderate inversion region. 

This equation, therefore, models the behavior of the 

channel charge accurately for all bias regions [15]. 

The core transport equation is the well-known drift-

diffusion model [2], given as 
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 = − − − −   −   


                       (5) 

where (1/ )H N depq r q= − . Also qm,S and qm,D are the 

normalized mobile charge densities at the source and 

the drain ends, respectively. Second order effects 

(like various short channel effects) are added on top 

of Equation (5) [2]. For GAAFET devices with 

multiple channels per fin, the model scales the 

calculated quantities appropriately to get the correct 

terminal characteristics. 

3. GAAFET Module 

The BSIM-CMG framework has the ability to 

simulate GAAFETs [2,15]. Recently, however, a few 

important new code modules have been added to 

capture the GAAFET specific effects like geometry 

dependent quantum effects and mobility degradation 

[13,14]. A new parasitic capacitance network has also 

been added to capture the effects of the GAAFET 

structure. In the following subsections we will 

discuss the most significant GAAFET specific 

physics that affect the core model behavior. 

3.1. Electrostatics 

BSIM-CMG, through a geometry module 

(GEOMOD=5), can calculate accurate values of Ach, 

Cins and Weff ; which are then used in the core model 

to get the electrostatic behavior, as described in 

Section 2. The calculation of Ach and Weff include the 

effects of rounded corners (Figure 1). This model 

also has the ability to accurately simulate multiple 

GAA bodies in a single fin (stack). The user can 

specify various geometry details like the width and 

thickness of the GAA bodies, the separation between 

GAA bodies, the number of GAA bodies per fin, fin 

height etc. The model takes all this geometry 

information to calculate the electrostatics 

accordingly. The model can also account for 

geometry variation among the GAA bodies inside a 

single fin. In addition to accounting the 

aforementioned geometry variations, the model 

further supports Monte Carlo circuit simulation to 

account for the stochastic device geometric 

variations that may be encountered in manufacturing. 

A significant impact of the confined channel of 

GAAFETs is the quantum confinement effect on the 

density of states of silicon. This affects the bias 

dependence of the channel mobile charge; which in 

turn affects all device characteristics. To understand 

the various quantum mechanical effects that play a 

role, consider the charge in a semiconductor, which 

can be written as 

1
2

1

1 exp

   

   

i
i

i i

D
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C D
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Q q g dE
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−
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         (6) 

where 
Dig  is the density of states for the ith subband, 

Ef is the fermi energy and Fj() is the Fermi integral 
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Figure 3. The plots show the gate capacitance with varying gate voltage; for channel thickness of 5nm. For 

larger cross-sections, like in (a), the confinement is non-existent. Extreme width confinement, as shown in (b), 

results in a small effect of subband separation. 

 

of order j. The term, 
iCN , is given as 

* 2

1
2 2

,

(2 )

i

i ii i

D

i i

C DD D

D m
N q



 
 + 
 

=                (7) 

where Di is the electrostatic dimension for the ith 

subband, 
*

im is the effective mass of the ith subband 

and  is the Planck’s constant. In BSIM-CMG, the 

user is allowed to choose up to 3 subbands and can 

modify individual subband parameters (refer Table 

2). 

With changing cross-section, the electrostatic 

dimension Di changes. It was recently pointed out 

that while 1D and 2D are popular and important 

special cases of quantum confined state, the 

electrostatic dimension can be a continuous variable. 

BSIM-CMG is the first compact model that accounts 

for this fact and can therefore accurately model 

GAAFET for continuously variable width, WSi
 [13]. 

For very confined channels, the system generally has 

lower dimension. For example, thin and wide 

channels behave as 2D systems whereas thin and 

narrow channels are confined in the width direction 

also, resulting in a 1D behavior. With decreasing 

confinement, the dimension gradually changes to 

higher values (2D/3D). This behavior is shown in 

Figure 3, Figure 4, and Figure 5, where the plots 

show capacitances (which mimic the density of 

states) for various cross-sections. As confinement 

reduces, the dimension shifts from lower to higher 

values.  

Figure 4 and Figure 5 also shows peaks and 

valleys in the capacitance. These occur due to 

subband separation. For very confined devices, the 

conduction band splits up into subbands resulting in 

peaks in the density of states; which are reflected in 

the capacitance plots. With increasing confinement, 

the subband energies increase and they move further 

apart as illustrated in Figure 5. For larger cross-

sections the subband energies reduce and they come 

closer in energy; forming continuous conduction 

band. The subband model has been discussed in 

detail in [13]. 

 
Figure 4. The plot shows the gate capacitance with varying 

gate voltage; for channel thickness of 3nm. For confined 

widths, the subband effects are quite pronounced and the 

overall electrostatic dimension reduces to 2D. 

 

Figure 6 (a) shows the variation of the 

electrostatic dimension with changing GAAFET 

width for 2nm thick channels (black line). As 

confinement reduces with increasing width, the 

dimension changes from 1D to 2D. The maximum 

dimension is restricted by the thickness confinement 

(2nm) and is hence limited to 2D. For thicker 

GAAFET devices (5nm) the maximum dimension 

goes up to 3D, as shown by the blue lines. Figure 6 

(b) shows the variation of the second subband energy 

for different cross-sections.  
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Figure 5. The plots show the gate capacitance with varying gate voltage; for different GAAFET thickness=2nm. 

The confinement changes from 2D to 1D with decreasing GAAFET width. 

 

    
Figure 6. (a) Variation of dimensions for the first and second subbands with thicknesses of 2nm (black lines) 

and 5nm (blue lines). (b) Variation of the second subband energy, with respect to the first subband energy, for 

various GAAFET widths and thicknesses. 

 

The capacitance (or charge) also depends on the 

effective mass, as shown in Equation (6) and 

Equation (7). The effective mass changes with 

confinement, and so does the bandgap. The effective 

mass contributes not only to the charge but also 

affects mobility. However, the effective mass 

formulations used in the electrostatics and transport 

are different. For both these effective mass 

calculations, we have parameters to modify the 

geometry dependence based on the device type, 

material, etc. The geometry dependence of the 

effective mass for the i-th subband in electrostatics 

calculations is given as 

0

0,* * ,

1
m

m Si

i

i

T

Si m Si

m m

T W




 


= +

 
 +
 
 

                (8) 

where 0,i , γ0, αm, βm and κm are device dependent 

parameters. 0,i can be used as a fitting parameter to 

tune the variation of effective mass for each subband. 

Note that the variation of effective mass in Silicon is 

quite complex since longitudinal and transverse 

masses react differently to confinement. However, 

for compact modeling purposes, we use have 

developed a single expression for geometry 

dependence of effective mass for electrostatics 

which has been described in Equation (8) [13]. 

The bandgap on the other hand plays a role in 

deciding the threshold voltage. With increasing 

confinement, both the bandgap and the effective 

mass increase. This increases the threshold voltage 

and reduces the amount of charge at a given voltage; 

as can be seen in Figure 5, Figure 4, and Figure 3. 

Another key requirement from the compact 

model is accuracy for derivatives of charges and 

currents. The peaks and valleys due to quantum 

confinement lead to multiple secondary peaks in the 

derivatives of charges. It is important that the 

compact model captures this to ensure high accuracy 

for analog/RF simulations. We have developed and 

tested our model up to the seventh derivative of 

charge to ensure high accuracy in non-linearity and 

harmonics simulations. Figure 7 shows the model 

results for multiple orders of derivatives along with 

the simulation results to validate this. 

The impact of confinement can also be seen in 

terminal currents. Figure 8 shows the drain-to-source 
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Figure 7. Derivates of charge from 1st to 7th order showing the accuracy of the model for higher 

order derivatives.  

 

 
Figure 8. Variation of (a) drain current, (b) transconductance and (c) derivative of transconductance 

with gate voltage. The solid and dashed lines are the simulation results with and without quantum 

confinement effects. 

 

 

current along with the transconductance and the 

derivative of the transconductance for WSi=6nm and 

TSi=2nm. The simulation has been done with a 

constant mobility to remove the effects of 

confinement on mobility. Impact of electrostatic 

confinement can be clearly seen in plots. Not only 

does the current reduce due to lower density of states, 

the effect of subband separation is also seen as 

distinct peaks and valleys in the derivatives.  

 

 

3.2. Transport 

In the BSIM-CMG framework, all the transport 

physics is captured through the concept of effective 

mobility(μ)[14]. The field dependence of mobility is 

captured through 

0,
,

1

eff

effE





=

+
                      (9) 

where 0,eff  is the effective mobility at low
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 transverse electric field, α and β are parameters and 

Eeff is the effective transverse electric field. For 

GAAFETs (as well as FinFETs) the effective 

mobility is dependent on the Silicon thickness, as 

shown in Figure 9. Note that the mobility, in general, 

reduces with increasing confinement. There are 

multiple factors that contribute to the geometry 

dependence of mobility, which have been captured 

through the concept of effective mass. From Figure 9, 

we can see that high confinement results in the 

reduction of the effective mobility (μ) which can be 

modeled by an increasing effective mass. This can be 

captured through the following equation [14] 

2*
1 1 20

0, 0 *

0 2

4
;   ,

2
eff m

Am m
S

mm

  
 



+ +
= =    (10) 

where 
2

1 0 ,g bulk Sim E T A = −  and 

2

2 0 ,( )g bulk Sim E B T = + . Here m0 is the rest mass of 

an electron, μ0 is a parameter representing the 

mobility with effective mass = m0. 
2 2

0 02 / ( )B h m a= where h is the Planck constant and 

a0 is the lattice constant. Also, Eg,bulk is the band-gap 

for bulk Silicon and / 64A B . Sm is a scaling 

factor used to tune the dependence for different 

materials, device types and dopings. 

 

 

Figure 9. Variation of mobility with inversion carrier 

density for different GAAFET thicknesses. The 

measurements are for a p-type device [9]. Mobility reduces 

with reduction in thickness because of the increase in 

effective mass with increasing confinement. Moreover, the 

field dependence of the mobility also changes with 

reduction of the thickness. 

 

Figure 10. Effect of different mobilities at the sidewall and 

the top/bottom surface. The mobility scales differently 

with width scaling for n-type and p-type devices since the 

ratio of mobilities at the sidewall and top/bottom surface 

are different for electrons and holes. 

 

The change in effective mass is not enough to 

capture the geometry dependence of mobility. It is 

important to note that the field dependence of 

mobility (high inversion charge) also changes with 

increasing confinement. This region is dominated by 

phonon-scattering and surface roughness scattering. 

This has been captured by including geometry 

dependence in α and β terms of Equation (9) [14]. 

Another phenomenon of geometry dependent 

mobility variation specific to GAAFETs is the effect 

of the different crystal orientations of the top/bottom 

surface and the sidewalls. Since these two surfaces 

are oriented differently, the mobilities for the 

sidewall and the top/bottom surfaces are different. 

This leads to the mobility depending on the width as 

well as thickness of the GAA body and the scaling 

being a function of the width and thickness. 

Moreover, the ratio of the mobility of the sidewall to 

that of the top/bottom surface (  ) may be less than 

unity for electrons and more than unity for holes; 

leading to completely opposite scaling trends for n-

type and p-type devices, as shown in Figure 10. This 

effect has also been captured in the latest BSIM-

CMG GAAFET model [14] as 

/

/

.Si sidewall Si

eff top bottom

Si Si top bottom Si Si

W T

W T W T




 



 
 
 = +
 + +
 
 

   (11) 

The final expression for mobility is given as [14] 

 

 

( ) ( )
0 0

*
.

1 Si Si

Si Si

W T
Si Si Si SiSi Si eff

m W T

W T W TmW T E



 



 
= + 

+ ++  
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Figure 11. Graphical representation of the parasitic capacitance components for FinFETs and GAAFETs. As 

can be seen, the GAAFET structure has additional components due to the multiple channels per fin. 

 

4. Parasitic Capacitance 

BSIM-CMG includes models for calculation of 

parasitic capacitances for various device geometries. 

Accurate modeling of parasitic capacitances plays a 

crucial role in the accurate analog, digital and RF 

simulations. Since there are differences between the 

device structures of FinFETs and GAAFETs, as 

shown in Figure 1, the latest BSIM-CMG model also 

has a specific module (CGEOMOD=3) for accurate 

parasitic capacitance calculation for GAAFET 

devices. This module takes into account the various 

structural details of the fin as well as the GAA 

channels inside it to calculate the various parasitic 

capacitance elements. The model has the ability to 

account for multiple GAA channels per fin as well as 

the parasitic FinFET, indicated in Figure 11(b) 

which shows the various components of parasitic 

capacitance for FinFETs and GAAFETs. The 

GAAFET structure has a more complex parasitic 

capacitance network because of the multiple GAA 

channels per fin. 

Some of the fringe capacitance components are 

explicitly shown in Figure 11(c). Due to the curved 

3D structure of FinFET and GAAFET channels, the 

corner components are different from the central 

ones. Moreover, the GAAFET structure has total six 

components of fringe capacitance per channel as 

opposed to only three components for the fin in case 

of FinFETs. For example, Cd has three components: 

one for the central region and two for the two 

corners, as shown in Figure 11(b). This is also true 

for Ce, Cf, Cg etc. The model for fringe capacitances 

is derived by summing over the capacitances of 

small area elements as 

,
d

C
A

 =


                        (13) 

where ΔC is the capacitance corresponding to the 

infinitesimal area element ΔA, ϵ is the effective 

permittivity of the insulating material and d is the 

effective thickness of the insulator. Note that the 

structure of these devices often does not result in 

simple parallel-plate capacitance scenarios with 

straight field-lines. In most cases, the two surfaces of 

the capacitor are at some angle (mostly orthogonal) 

to each other and the field-lines curve from one 

surface to the other. In such cases, the effective d is 

calculated using the length of the field-line assuming 

that the field-lines follow an ellipse, as shown in 

Figure 12 [2]. For orthogonal surfaces, the effective 

distance is a quarter of the perimeter of an ellipse 

given by 

2 2

perimeter of ellipse = 2 ,
2

a b


+
      (14) 

where a and b are the length of the major and minor 

axes of the ellipse, respectively. 

 
Figure 12. Graphical representation capacitance 

calculation for orthogonal surfaces. 
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Table 2. Selected BSIM-CMG parameters used in GAAFET modeling. 

Parameters Description 

FPITCH Fin pitch 

TMASK Height of the hard mask on top of the fin 

TGATE Gate height on top of hard mask 

HEPI Height of the raised source/drain on top of the fin 

TSILI Thickness of the silicide on top of the raised source/drain 

WGAA Width of GAA channel (represented by WSi in Figure 1b) 

TGAA Thickness of GAA channel (represented by TSi in Figure 1b) 

DWS1/DWS2/DWS3 Rounded corner correction for total channel perimeter of the 1st/2nd/3rd/ GAAFET; 

in case there are multiple GAAFETs per fin 

DACH1/DACH2/DACH3 Rounded corner correction for total channel area of the 1st/2nd/3rd/ GAAFET; in 

case there are multiple GAAFETs per fin 

TSUS Distance between multiple GAAFETs per fin 

NGAA Number of GAA per fin 

HPFF Height of parasitic FinFET 

U0ETAWSC Ratio of the mobility of the sidewall to that of the top/bottom surface 

EGBULK Bulk band-gap 

 

 

The calculation of overlap capacitances also 

changes from FinFET to GAAFET since the overlap 

length changes because of the GAAFET structure. 

Also, multiple GAAFET channels in a single fin 

requires the overlap capacitance of a single 

GAAFET be scaled by the total number of channels 

per fin to ensure that the terminal characteristics are 

captured correctly [2]. 

5. Model Parameters 

BSIM-CMG provides the model user with 

carefully implemented model parameters that can be 

adjusted using software tools to match the model to 

manufactured transistors very accurately. This 

crucial step is performed by the foundry of the fab of 

an integrated device manufacturer. One may say that 

a device model is the model code, such as BSIM-

CMG, plus a specific parameter value set. For 

example, the difference between Samsung 3nm GAA 

transistors and TSMC 2nm GAA transistors are 

captured and represented by two difference sets of 

the BSIM-CMG parameters. These parameters, 

about forty in number for the GAA related effects, in 

conjunction with the device information that the IC 

designer specifies, such as the width of the GAA 

channel and the length of the GAA gate, are used by 

computer-aided IC design tools to simulate, design 

and optimize circuits. Some of the key parameters 

for GAAFET devices are specified in Table 2.  

Simulation speed is also a key characteristic of 

a good compact models. BSIM-CMG includes all of 

necessary physics while rapidly calculating all the 

terminal currents and charge (for capacitive currents) 

for any given terminal voltages. The speed allows 

the use of Monte Carlo circuit simulation to account 

for random device variations encountered in 

manufacturing. The compact model also provides 

some parameters to allow the model user to optimize 

their simulation accuracy versus time to best suit 

their requirements. 

6. Conclusion 

We have presented the BSIM-CMG compact 

model framework; with emphasis on the modeling of 

GAAFETs. This compact model has been 

extensively used by the semiconductor industry for 

FinFET based IC designs. We have discussed the 

model core which forms the backbone for all the 

calculation. We have also discussed the latest 

modules that capture the potentially strong effects of 

quantum confinement on silicon density of states and 

transport in GAAFET devices. This model is the 

industry standard compact model for simulating and 

designing GAA ICs, libraries and IPs. 

References 

[1] X. Huang, W-C. Lee, C. Kuo, D. Hisamoto, L. Chang, 

J. Kedzierski, E. Anderson, H. Takeuchi, Y-K. Choi, K. 

Asano, V. Subramanian, T-J. King, J. Bokor, C. Hu, “Sub 

50-nm FinFET: PMOS,” IEDM Technical Digest, 

Washington, DC, pp. 67-70, December 5-8, 1999. 

[2] Y. S. Chauhan et al., “FinFET Modeling for IC 

Simulation and Design: Using the BSIM-CMG Standard”. 



Dasgupta et al.: BSIM-CMG Compact Model for IC CAD: from FinFET to Gate-All-Around FET Technology 

 

J. Microelectron. Manuf. 3, 20030402 (2020) 10  

New York, NY, USA: Academic, 2015, doi: 

10.1016/B978-0-12-420031-9.09994-2. 

[3] H. Mertens et al., “Vertically stacked gate-all-around 

Si nanowire CMOS transistors with dual work function 

metal gates,” in IEDM Tech. Dig., Dec. 2016, pp. 19.7.1–

19.7.4, doi: 10.1109/IEDM.2016.7838456. 

[4] M. Karner et al., “Vertically stacked nanowire 

MOSFETs for sub-10 nm nodes: Advanced topography, 

device, variability, and reliability simulations,” in IEDM 

Tech. Dig., Dec. 2016, pp. 30.7.1–30.7.4, doi: 

10.1109/IEDM.2016.7838516. 

[5] Y. Jiang et al., “Performance breakthrough in 8 nm 

gate length Gate-AllAround nanowire transistors using 

metallic nanowire contacts,” in Proc. Symp. VLSI 

Technol., Jun. 2008, pp. 34–38, doi: 

10.1109/VLSIT.2008.4588553. 

[6] Y. Cui et.al., “High performance silicon nanowire field 

effect transistors,” Nano Lett., vol. 3, no. 2, p. 149–152, 

2003, doi: 10.1021/nl025875l. 

[7] N. Loubet et al., “Stacked nanosheet gate-all-around 

transistor to enable scaling beyond FinFET,” in Proc. 

Symp. VLSI Technol., Jun. 2017, pp. T230–T231, doi: 

10.23919/VLSIT.2017.7998183. 

[8] K. H. Yeo et al., “Gate-all-around (GAA) twin silicon 

nanowire MOSFET (TSNWFET) with 15 nm length gate 

and 4 nm radius nanowires,” in IEDM Tech. Dig., Dec. 

2006, pp. 1–4, doi: 10.1109/IEDM.2006.346838. 

[9] C. W. Yeung et al., “Channel geometry impact and 

narrow sheet effect of stacked nanosheet,” in IEDM Tech. 

Dig., Dec. 2018, pp. 28.6.1–28.6.4, doi: 

10.1109/IEDM.2018.8614608. 

[10] G. Bae et al., “3 nm GAA technology featuring multi-

bridge-channel FET for low power and high performance 

applications,” in IEDM Tech. Dig., 2018, pp. 28.7.1–

28.7.4, doi: 10.1109/IEDM.2018.8614629. 

[11] A. Dasgupta, A. Agarwal, and Y. S. Chauhan, 

“Unified compact model for nanowire transistors including 

quantum effects and quasi-ballistic transport,” IEEE Trans. 

Electron Devices, vol. 64, no. 4, pp. 1837–1845, Apr. 2017, 

doi: 10.1109/TED.2017.2672207. 

[12] A. Dasgupta et.al., “Compact modeling of cross-

sectional scaling in gate-all-around FETs: 3-D to 1-D 

transition,” IEEE Trans. Electron Devices, vol. 65, no. 3, 

pp. 1094–1100, Mar. 2018, doi: 

10.1109/TED.2018.2797687. 

[13] A. Dasgupta et.al., "BSIM Compact Model for 

Quantum Confinement in Advanced Nanosheet FETs", 

IEEE Transactions on Electron Devices, vol. 67, no. 2, 

2020. 

[14] A. Dasgupta et.al., "Compact Model for Geometry 

Dependent Mobility in Nanosheet FETs", IEEE Electron 

Device Letters, vol. 41, no. 3, 2020. 

[15] J. P. Duarte et.al., “BSIM-CMG: Standard FinFET 

Compact Model for Advanced Circuit Design”, IEEE 

European Solid-State Circuit Conference (ESSCIRC), 

Graz, Austria, Sept. 2015. 

[16] J. Wang et.al., “Bandstructure and orientation effects 

in ballistic Si and Ge nanowire FETs,” in IEDM Tech. 

Dig., Dec. 2005, p. 533, doi: 

10.1109/IEDM.2005.1609399. 

[17] Y. S. Chauhan et al., FinFET Modeling for IC 

Simulation and Design: Using the BSIM-CMG Standard. 

New York, NY, USA: Academic, 2015, doi: 

10.1016/B978-0-12-420031-9.09994-2. 

[18] B. Sorée, W. Magnus, and G. Pourtois, “Analytical 

and self-consistent quantum mechanical model for a 

surrounding gate MOS nanowire operated in JFET mode,” 

J. Comput. Electron., vol. 7, no. 3, pp. 380–383, 2008, doi: 

10.1007/s10825-008-0217-3. 

[19] S. Venugopalan et.al., “Phenomenological compact 

model for QM charge centroid in multigate FETs,” IEEE 

Trans. Electron Devices, vol. 60, no. 4, pp. 1480–1484, 

Apr. 2013, doi: 10.1109/TED.2013.2245419. 

 

Photography & Biography 

 

Avirup Dasgupta is a 

postdoctoral scholar at the 

Department of Electrical 

Engineering and Computer 

Science, University of 

California, Berkeley, CA, USA. 

He is the manager of the 

Berkeley Device Modeling 

Center and a developer in the 

BSIM group. 

 

 

Chenming Hu is currently a 

Distinguished Professor 

Emeritus with the University of 

California at Berkeley, Berkeley, 

CA, USA. He is also a Board 

Director of SanDisk Inc., 

Milpitas, CA, USA, and the 

Friends of Children with 

Special Needs, Fremont, CA, 

USA 

 

 

 



J. Microelectron. Manuf. 3, 20030403 (2020) 

doi: 10.33079/jomm.20030403 

 

 1  

On the History of the Numerical Methods Solving the Drift  

Diffusion Model 
 

Bernd Meinerzhagen * 

Technical University Braunschweig, Germany 

Abstract: In 1964 Hermann Gummel published the first numerical solution method for the one-

dimensional Drift Diffusion model. In his seminal paper [1] already the nonlinear iteration method 

and the basics of the discretization method named after him are outlined. Soon after this paper 

appeared many research groups worldwide tried to solve the Drift Diffusion equations in two and 

more dimensions applying predominantly general finite element discretization methods which 

were very popular at these days. Due to this a large variety of different codes solving the 

multidimensional Drift Diffusion equations based on many different space discretization schemes 

existed in the seventies. However already in the nineties all Drift Diffusion simulators being of 

importance for semiconductor device design in industry and academia still used Gummel’s 

nonlinear iteration method but were entirely based on just one specialized space discretization 

method, which incorporates the basic ideas of the Scharfetter-Gummel discretization scheme [2]. 

All other codes which were not based on this special space discretization method had nearly 

vanished already in the nineties and this is still the case today. This paper tries to shed some light 

on the hidden reasons for this astonishing development. 
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1. Introduction 

In the following the development of the 

numerical solution methods for the Drift Diffusion 

(DD) equations will be reviewed, since much can be 

learned from this development for comparable tasks 

in the future. Aspects covered well in the literature 

will be only shortly mentioned by citing the 

appropriate references. Other aspects that are very 

important as well but rarely mentioned in literature 

or even nearly forgotten today will be highlighted. 

Especially the aspect of preserving the inherent 

"stability" of the underlying differential equations in 

terms of monotonicity properties during the 

discretization and solution process will be carefully 

examined. The general flow of arguments presented 

here follows closely those outlined in Reference [3]. 

Several details have been previously published as 

well in References [4, 5]. Some hints concerning the 

Hydrodynamic (HD) model [6] will be given at the 

end. 

2. History of the Numerical Models 

Since the quasi Fermi potentials Φn and Φp 

(imrefs) for electrons or holes, respectively, cover a 

much smaller range of numerical values compared to 

the electron or hole densities n, p, intermediate and 

final solutions of the drift diffusion system of 

equations are typically saved by storing the 

electrostatic potential Ψ, and the imrefs Φn and Φp 

instead of Ψ, n and p. Moreover, formulating the DD 

equations in Ψ, Φn, and Φp makes it much easier to 

introduce the solution algorithms that are typically 

applied. The stationary drift diffusion equations for a 

homogeneous semiconductor (e.g., silicon) device 

formulated in these variables have the following 

form (see References [7, 4, 8, 9] for details and a 

derivation), 

( )  
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where e is the elementary charge and κ is the 

permittivity of the different materials for which 

Poisson’s Equation (1) is solved. Moreover ni is the 

intrinsic density, ND, NA are the ionized donor and 

acceptor concentrations and µn, µp the electron and 

hole mobilities of the semiconductor material with 

homogeneous band gap within which the electron 

and hole continuity Equations (3, 2) are solved. In 

addition, VT is the thermal voltage and G the 

generation density within the semiconductor. For 

simplicity it is assumed that at all contacts the 

Dirichlet boundary conditions of the ideal Ohmic 

contact model (see References [4, 9] for details) are 

valid for all three potentials Ψ, Φn and Φp and that at 

all other boundaries homogeneous Neuman type 

boundary conditions can be applied. 

It can be shown that the above system of 

differential equations has a unique solution provided 

a number of reasonable assumptions is fulfilled 

especially for the generation term G. Please refer to 

Reference [10] for a general theory and to 

References [11, 12] for special results concerning the 

DD set of equations. 

There is an important property, that deserves 

special attention. 

I. All above operators TP - TE are in 

divergence form and result in important 

conservation laws if integrated over a finite 

volume and after the application of the 

divergence theorem. 

For example integrating TH+TE over the 

simulation domain results in Kirchhoff’s law for the 

stationary terminal currents of the device under 

consideration. If a numerical device model is used 

inside a circuit simulator it is absolutely mandatory 

that this law is exactly reproduced by the numerical 

model. Therefore, it is very important to maintain the 

validity of such conservation laws in some sense 

during the discretization process. 

The most important solution algorithm for the 

DD system is an iterative method often addressed as 

Gummel’s nonlinear relaxation method [1]. Assuming 

the result Ψk, Φp,k, Φn,k, after iteration k as known, 

this method evaluates the new approximate solution 

after iteration k+1 by solving the three boundary 

value problems (1) - (3) successively as follows: 
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For the above partiell differential equations it is 

always assumed that the variable with the highest 

number of derivatives in the equation is updated and 

the other variables are kept unchanged. The 

individual nonlinear equations in (4) are typically 

solved by Newton’s method, which converges very 

fast and robust even for bad initial solutions, if the 

underlying equation is nearly linear. Therefore, 

Newton’s method is typically applied for the 

operators T̂H  and T̂E  defined in Equation (2) and 

Equation (3) and not for the operators TH and TE, 

since T̂H and T̂E  are nearly linear in the new 

variables 

: exp ,  : exp  ,
p n

p n

T TV V
 

 −   
= =   
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        (5) 

provided carrier generation G has no dominant 

influence. These new variables are often addressed 

as Slotboom variables because they were first 

introduced in Reference [13] and the advantages they 

have for generating “stable” discretization schemes 

were probably mentioned in Reference [7] for the 

first time. Nevertheless it is still possible to calculate 

the Newton updates based on the numerically more 

convenient Jacobians of TH and TE and the variables 

Φp and Φn. The only modification necessary for 

performing the Newton iterations for the more linear 

operators is to modify the Newton update itself as 

shown below for the hole continuity equation and the 

solution function before (Φp,b) and after (Φp,a) one 

Newton step. 
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         (6) 

p  is the Newton update calculated using the 

Jacobian of TH for the variable p . For a general 

report on using alternative solution variables for 

enhancing convergence please refer to Reference 

[14]. 

In order to understand which criteria in addition 
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to the mandatory consistency criterion should be 

considered for the discretization of the continuous 

operators TP - TE it is very useful to look at the 

Jacobians of TP, T̂H  and T̂E  that are necessary for 

performing Gummel’s nonlinear relaxation method 

based on Newton’s method. These Jacobians are 

typically evaluated for some existing intermediate 

solution Ψb, Φp,b, Φn,b and operate on the functions 

 , p , n . If in addition for the calculation of 

the Jacobians the dependence of the mobilities on the 

solution variables is neglected, these Jacobians have 

the following form.: 
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All above partial derivatives with respect to 

solution variables are assumed to be Frechet 

derivatives on suitable function spaces [15]. If only 

direct recombination and Shockley-Read-Hall (SRH) 

recombination [9] is considered for the Frechet 

derivative of the carrier generation G 
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holds. With this additional condition all Jacobians 

(7)-(9) have important properties that again deserve 

special attention. They are 

II. self adjoint, 

III. positive definite, 

IV. of monotone typ, 

 

if appropriate boundary conditions are assumed for 

the function spaces considered [15]. Especially 

property IV is very important, since it means that for 

all these Jacobians monotonicity theorems hold 

(Reference [15], Chapter 23.5) which restrict for 

example the possible form of the update functions 

 , p , n during the Newton iterations required 

for Gummel’s nonlinear relaxation method very 

much and enhance the robustness and convergence 

properties of this solution method decisively. 

The mathematical properties of the model 

after discretization should be as similar as 

possible to the properties of the continuous model! 

If this is fulfilled the discrete model is an analogon 

of the continuous model, even if only coarse grids 

can be afforded, which is typically the case. This 

property is very important for the discretization error 

control on coarse grids. Therefore discretization 

methods are preferred which are able to conserve 

conditions I -IV in some discrete sense.  

The first 2D DD simulations used a rectangular 

solution domain and tensor product grids [16, 7] so that 

standard finite difference discretization methods for 

tensor product grids could be applied, that conserved 

most of the conditions mentioned above. However 

many device cross sections were not rectangular, so 

that at least at the beginning of multi-dimensional 

numerical semiconductor device modeling many 

groups developed discretization methods (see 

References [17, 18, 19, 20, 5, 21, 22] and citations 

therein) for non rectangular solution domains based 

on the finite element approach [23], but it turned out 

that general finite element methods typically have 
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problems to conserve conditions I-IV [24, 18, 5, 25]. 

Finally, even for solution domains with complicated 

polygonal boundaries which cannot be discretized 

efficiently by a tensor product grid, the method of 

choice used today by the vast majority of DD and 

HD simulators is a straight forward generalization of 

the integration method published in Reference [26], 

Chapter 6 for 2D tensor product grids. This method 

is able to conserve conditions I-IV as will be shown 

below. This generalization for 2D problems was 

already briefly mentioned in Reference [26] using 

the early work of Reference [27] as guideline. This 

general method is addressed as box integration 

method in Reference [4], as box method in 

Reference [5] and today often named finite volume 

method [28]. An especially well documented example 

of this historical development from the application of 

general finite element methods to the final exclusive 

application of the finite volume method is the 

development of numerical device modeling codes at 

IBM research. There two groups independently 

developed two general numerical device modeling 

codes. One group with a clear focus on the 

application of general finite element methods [24, 19, 20] 

and the other group shifting more and more from 

hybrid finite element/ finite volume discretization 

methods to the exclusive application of the finite 

volume method [29, 18]. Both codes were developed 

over a decade until the beginning of the eighties. Ten 

years later the finite element code development is 

not mentioned at all any more in a comprehensive 

review paper about the TCAD development at IBM 

with more than 200 citations [30]. 

Possibly the first mathematical analysis of the 

general box integration method for the DD model in 

3D is due to Reference [31]. The box integration 

method can be interpreted as a finite element method 

[5], but the grid elements for this method (e.g. 

triangles) cannot be considered as the basis from 

which the discretization method proceeds like it is 

the case for a general finite element method [23] but 

instead the elements are constructed in a unique way 

based on the predefined grid points. The method is 

based on the construction of two dual grids the 

Voronoi diagram and the Delaunay tessellation. The 

early work of the two Russian mathematicions M.G. 

Voronoi [32] and B.N. Delone [33] is typically cited in 

this context but the method in 2D is even much older 

and has been rediscovered various times. Figure 1 

below is used to explain the basic principles of this 

method. The n grid points Pk (n = 9 in this example) 

with the coordinates kr  are considered as given. In a 

first step for each point with index k its Voronoi 

volume Vk is constructed as the set of all points in 

space that are closer to Pk than to any other grid 

point. 

 

:

      | , 1,.., ,

k

k j

V

j n j k

=

−  − = r r r r r
  (11) 

Moreover for each grid point Pk its environment Sk is 

defined by 

( ) 

:

      | 0, 1,.., , .

k

k j

S

j M V V j n j k

=

  = 
  (12) 

M indicates the 1D Lebesgue measure M1 for 2D 

problems and the 2D Lebesgue measure M2 for 3D 

problems. With this environment the boundary of Vk 

is given by 

: = ( )
k

k k j

j S

δV V V


               (13) 

The union of all Voronoi volume boundaries 

defines the Voronoi diagram. Based on this diagram 

the dual grid structure of the Delaunay grid is 

defined by defining the set of edges D for this grid 

by the straight lines li,k between the points Pi and Pk 

for which ( ) 0k iM V V  and i and k vary between 1 

and n with i k . Please note that the li,k are oriented 

curves starting at Pi and ending at Pk. If only the 

edges of the Delaunay grid without orientation are 

important li,k and lk,i can be considered as equal. The 

typical elements in such a Delaunay grid for 2D 

problems are triangles and tetrahedra for 3D 

problems. But 2D and 3D rectangular tensor product 

grids are special cases for this method and fit 

perfectly into this framework. The DD and HD 

problems are typically formulated as boundary value 

problems on some finite region Ω  and in order to 

incorporate Newman type boundary conditions into 

the framework of box integration in a natural manner 

the boundary Ωδ  is typically assumed to be 

composed of edges (faces in 3D) of the delaunay 

grid elements. In the given example in Figure 1, Ωδ  

is the closed polygonal line composed of 

1,3l ,
3,5l ,

5,8l ,
8,9l ,

9,7l ,
7,2l  and 

2,1l  and Ω  is the 

interior of this closed polygonal line. The Voronoi 

volumes for the grid points on Ωδ  are typically 

unbounded but for box integration bounded boxes 

are mandatory. This leads to the following 

definitions:
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Figure 1. Voronoi diagram (dashed lines) and Delaunay tessellation (thick drawn lines) for a 2D example with 9 

grid points. 

 

 

= (ΩU Ω)k kB V δ                    (14) 

k, j k jF = δV V                   (15) 

Clearly ( ) 0k, jM F   and 
k, jF  is only relevant if 

,k il is part of the Delaunay grid. If no additional 

constraints are fulfilled it can happen that 

( ) = 0k, jM F  for some edge of the Delaunay grid. 

This is typically not good for the consistency of the 

discretization method and mostly avoided by 

constructing the grid in such a manner that for 

example for 2D problems like the given example the 

Delaunay triangles that have some common 

boundary edge with Ωδ  have all interior angles 

smaller than 90 degrees. Such triangles are called 

acute or nonobtuse. See for example Reference [34] 

for algorithms generating grids in such a manner. If 

this additional condition is fulfilled ( ) > 0k, jM F  for 

all edges of the Delaunay grid holds and only the 

boxes 
kB  of grid points on the boundary Ωδ  share 

some boundary with Ωδ  like 
7B  for the given 

example. Similar additional conditions with 

comparable consequences are considered as well for 

3D problems [31]. For the box integration process 

presented here it is not necessary that all triangles are 

nonobtuse for preserving condition IV but for finite 

element discretization schemes this condition must 

be fulfilled [34, 5]. 

The boundary value problems TP, T̂H and T̂E  

defined in Equations (1) - (3) and considered as 

individual problems that are solved separately have 

the following common form: 

( ( , , ) )

( , , ) 0

a u u u

f u u

−  +

=

  



r r r

r

r

r
  (16) 

( )u r  is the solution variable. Therefore u is either   

or pζ  or 
nζ . Morover ( , , ) 0a u u 

r
r  holds always. 

The dependence of a and f on u
r

  and u considers 

the typical physical models for the mobilities and the 

generation rate and their dependence on the solution 

variables [9]. The first step always performed for the 

box method is to integrate Equation (16) over the 

box Bk for each grid point Pk, which is not 

determined by a Dirichlet boundary condition. 

Moreover the divergence theorem is used to 

transform the suitable parts of the integral over Bk 

into integrals over δBk. This yields: 

,
,( , , )( )

( , , ) 0

k j
k

k

k j
F

j S

B

a u u u dF

f u u dV



− 

+ =

 



 



r r

r

r v

r

       (17) 

,k jv  is a unit vector having the same orientation as 

k, jl . The above formulation is for the 3D case, 

where the first integrals integrate fluxes over an area 

and the remaining part is a volume integral. In the 

2D case the first integrals are line integrals and the 

second part is an area integral. If ( Ω) 0kM B δ   it 

can typically be assumed that for this part of the 

boundary ( Ω)kB δ a Newman type boundary 

condition holds such that the flux through this part of 

the boundary is zero. This applies for instance for 

7B  in the example, if for 
7P  no Dirichlet boundary 

condition is given. It is clear that 
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,

,

,

,

( , , )( )

( , , )( )

k j

j k

k j
F

j k
F

a u u u dF

a u u u dF



− 





 

 

r r

r r

r v

r v
           (18) 

where  the  first  integral  is  related  to  Pk  and  the 

box integration over Bk, whereas the second integral 

is related  to  the  point  Pj  and  the  box  integration  

over Bj. During the discretization process the 

integrals in Equation (17) are typically approximated 

independently by difference approximations and 

quadrature rules such that a consistent discrete 

approximation  is  generated.  For  conserving 

property  I  it  is  important  that Equation  (18)  

holds  exactly after  discretization.  If  this  is  the  

case  the discretized  formulas  for  two  points  Pj  

and Pk with jk S  (like P4 and P6 in the example) 

can be summed leading to an expression where the 

sum of the  discretized  integrals  over  Bk  and  Bj  is 

represented  by  the  discretized  flux  integrals    

over the boundary of 
k jB B  which is 

, , ,(( ) ( ) (( ) )) \
k ji S k i i S j i k j k jF F B B F   . 

The resulting expression can be interpreted as a 

discrete version of the divergence theorem for 

k jB B  and its boundary. If the discretized problem 

is solved exactly this discretized version of the 

integral theorem holds exactly and does not depend 

on any discretization error. Relations of this kind are 

very helpful for checking the global numerical 

accuracy and the consistent calculation of for 

instance terminal currents.  

In order to study how to preserve properties II-

IV during the discretization process equation (16) is 

simplified again by neglecting the dependence of a 

on the solution variable u and considering only the 

dependence of direct and SRH generation on the 

solution variable. Thus Equation (16) simplifies to 

( ( ) ) ( , ) 0a u f u + =
r r

r r-              (19) 

and ( ) 0f ,u
u





r  holds always. If the 

discretization preserves property I the discretized 

integral over 
k, jF  in Equation (17) can be considered 

as a function ( )k, jG l . This implies that G depends as 

well on everything clearly connected to 
k, jl  like 

kP  

and 
jP  . Since Equation (18) shall be preserved 

,( ) ( ) ( )k, j k, j j kG l G l G l= − − = −  must hold. Lets assume 

that the discrete solution is represented by a vector u 

with n entries uj and each uj is the discrete 

approximation of the function u at the point Pj. The 

Jacobian of the equation system after discretization 

should be self adjoint (symmetric). This requires the 

condition 
, ,( ) ( )k j j k

j k

G l G l
u u

 
=

 
. There are not 

too many alternatives left if these above two 

conditions must be fulfilled simultaneously. One 

discretization formula, for which both conditions 

hold, is 

,

, ,

1 ,

( )
( ) ( )( ).

( )

k j

k j k j j k

k j

M F
G l a l u u

M l
= − −           (20) 

Here 
,( )k ja l  is a suitable mean value of ( )a r  that 

can be considered as a function of 
,k jl  and for which 

, ,( )= ( ) 0k j j ka l a l   must be satisfied. If in addition 

the integral over the box 
kB  in Equation (17) is 

discretized using the simplest quadrature formula 

( , ) ( ) ( , ),
k

k k k
B

f u dV B f u r r           (21) 

the strict diagonal dominance of the Jacobian matrix 

of the discrete system is guaranteed as well.   

indicates the 2D Lebesgue measure for 2D problems 

and the 3D Lebesgue measure for 3D problems. So 

far only the discretization for all points which are not 

given by a Dirichlet boundary condition has been 

studied. The set of indices of these points should be 

given by 
BS . Moreover 

DS  contains all indices of 

points that are given by a Dirichlet condition. The 

Jacobian entries for the latter points are simply 1 for 

the main diagonal and 0 for the other entries. In 

summery the Jacobian of the discretized boundary 

value problem (19) is strictly diagonal dominant, all 

main diagonal elements are strictly positive and all 

other elements are negative or zero. Such matrices 

are positive definit and M-matrices as well, which 

means that their inverse matrix has only elements 

that are positive or zero [26]. These properties are very 

beneficial for a large number of solution algorithms 

solving linear equations involving matrices. The 

convergence of iterative methods like the Jacobi or 

Gauss-Seidel methods is guaranteed [26], semi-

iterative methods like conjugated gradient algorithms 

work well [35] and even Gaussian elimination profits 

because a pivot element search is not necessary and 

the accumulation of the rounding error during 

elimination is well controlled. Finally and probably 

most important the discrete system introduced above 

is of monotone type, which means that important 

stability inequalities can even be derived for the 

maximum norm, which is the most important norm 
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for practical applications. For example in Reference 

[36], Chapter 4.2.2, the following is proven. If for all 

k ∈ SB 

,

,

1 ,

,

( )
( )( )

( )

( ) ( , )

k

k j

k j j k

j S k j

k k k b k k

M F
a l u u

M l

B f u u R
u

 

 



− −


+ =





r

           (22) 

and 
k ku b =  for all 

Dk S , then the following 

stability inequality holds for the discrete solution: 

1

,

max

max max

( ) ( , )
B

D

k
k n

k

k
k Sk S

k k k b

u

R
b

B f u
u





 





+



r

       (23) 

This inequality is directly applicable for the 

estimation of the maximum Newton correction if the 

Jacobian on the left hand side of Equation (22) is 

used to solve the discretized nonlinear problem (19) 

by Newton’s method. Moreover such stability 

inequalities are very useful for evaluating upper 

bounds for the discretization error even for the 

nonlinear problem (19). In Reference [25] an 

excellent example is given demonstrating clearly 

how bad the discretization error is controlled if the 

off diagonal elements of the Jacobian of the 

discretized electron continuity equation have both 

signs. Moreover it is shown as well in Reference [25] 

for the same problem that the discrete solution gets 

much more accurate and very well controlled by the 

applied voltages if all off diagonal elements of the 

Jacobian become always negative or zero after a 

modification of the grid. The underlying reason is 

not as falsely stated in Reference [21] that the 

original grid had one obtuse triangle but that the 

original grid was not the Delaunay grid constructed 

on the basis of the Voronoi diagram, whereas the 

modified grid is the Delaunay grid. As pointed out 

already earlier, a Delaunay grid may contain obtuse 

triangles!  

Another advantage of the discretization scheme 

presented above is that it allows a straight forward 

incorporation of the Scharfetter-Gummel 

discretization formula for the balance equations, 

which was originally developed for rectangular grids 

[2, 4, 5]. The application of this discretization formula 

is mandatory for achieving accurate simulation 

results on coarse grids. For general finite element 

schemes it is typically very difficult to incorporate 

this formula but for the scheme described above it is 

easily done by choosing 
,( )k ja l  as follows: 

For holes: 

,

i , T

T T

( )

( )

exp( ) exp( )

k j

j k

p k j

j k

a l

n l V

V V



=

 −

 
−

       (24) 

For electrons: 

,

i , T

T T

( )

( )

exp( ) exp( )

k j

k j

n k j

j k

a l

n l V

V V



=

 −

− −
−

     (25) 

, ,( )n p k jl  are appropriate mean values of the 

mobilities that can be regarded as a function of the 

edge 
,k jl . Results concerning the consistency and 

convergence of the discretization scheme described 

above for the balance equations can be found in 

Reference [31]. 

Gummel’s nonlinear relaxation method (4) 

performed in such a manner that the relevant discrete 

Jacobian matrices fulfill conditions II-IV, which 

typically means that derivatives with respect to the 

solution variables are neglected for the mobilities 

and impact ionization, converges nearly always even 

for very bad initial solutions. One of the rare counter 

examples is given in Reference [14]. The 

convergence is typically slow for high current 

applications but is very predictable so that the 

solution accuracy can be estimated very reliably 

during the iteration process [37]. This allows to switch 

to more coupled methods like a simultaneous 

Newton method not before the solution accuracy is 

so high that the simultaneous Newton method is in 

the range where it converges quadratically. Of course 

in this case all derivatives should be considered in 

the Jacobian matrix of the fully simultaneous 

Newton method. The availability of this combination 

of solution methods for the DD model featuring high 

robustness even for bad initial solution and high 

accuracy at the same time is possibly one reason why 

the DD model is still the numerical device model 

that is applied by far most even for nanoscale 

devices, where its physical accuracy is certainly 

questionable [38]. The above comments concerning 

the beneficial effect on robustness of neglecting the 

derivatives of the mobilities and impact ionization 

apply as well to other nonlinear relaxation methods 

[39, 14] and are even valid for the fully coupled 

Newton method outside the range of quadratic 
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convergence. It is rather straight forward to extend 

the box integration method including a Scharfetter-

Gummel type discretization for the energy flux 

densities to the HD model [6]. A nonlinear relaxation 

method with comparable convergence properties to 

Gummel’s method has been published in Reference 

[40] and evaluated in Reference [41] for the HD 

model. For this method and the numerical solution 

algorithms of the HD model in general convergence 

robustness increases as well decisively if certain 

derivatives with respect to mobilities and impact 

ionization are turned off in order to enhance the 

“stability” of the discretized equations. 

3. Conclusion 

Based on the historic development of the space 

discretization and solution methods for the Drift 

Diffusion model it is shown how important it is for 

the error control on coarse grids to preserve 

especially the monotonicity properties of the 

underlying partial differential equations in the final 

discretized model. The author believes that this 

observation should serve as a guideline for the 

development of discretization methods for transport 

models in future. 
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Abstract: This paper presents the latest status of the open source advanced TCAD simulator called 

Nano-Electronic Simulation Software (NESS) which is currently under development at the Device 

Modeling Group of the University of Glasgow. NESS is designed with the main aim to provide an 

open, flexible, and easy to use simulation environment where users are able not only to perform 

numerical simulations but also to develop and implement new simulation methods and models. 

Currently, NESS is organized into two main components: the structure generator and a collection 

of different numerical solvers; which are linked to supporting components such as an effective 

mass extractor and materials database. This paper gives a brief overview of each of the 

components by describing their main capabilities, structure, and theory behind each one of them. 

Moreover, to illustrate the capabilities of each component, here we have given examples 

considering various device structures, architectures, materials, etc. at multiple simulation 

conditions. We expect that NESS will prove to be a great tool for both conventional as well as 

exploratory device research programs and projects. 

Keywords: Integrated Simulation Environment, Variability, Drift-Diffusion, Quantum Correction, 

Kubo-Greenwood, Non-Equilibrium Green’s Function. 
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1. Introduction 

Two of the major issues with experimental 

research and design are cost and time. Technology 

computer-aided design (TCAD) plays a crucial role 

in reducing the development costs and time-to-

market for the semiconductor industry by performing 

physical analysis of already existing devices or novel 

technologies and transistor architectures [1]. 

Therefore, in the development of the TCAD tools, 

there are two key objectives: accurate physical 

models and reduced simulation time. 

A great amount of commercially available 

TCAD software [2,3] as well as academic simulation 

tools with different levels of complexity, including 

drift-diffusion (DD) with quantum corrections [4,5], 

3D ensemble Monte Carlo (MC) [6-8], multi-subband 

(MS) 2D [9] and 1D MC [10], direct Boltzmann 

Transport Equation (BTE) solvers [11], Non-

Equilibrium Green’s Function (NEGF) simulators in 

ballistic regime [12] and with scattering [13] already 

exist. However, the commercial TCAD tools so far 

are not open source software, which limits 

collaboration. Meanwhile, the academic software 

tends to work in isolation, and it is difficult to 

investigate a particular transistor structure with 

different complexity of simulation techniques [14]. 

In this paper, we introduce the concepts and the 

inner workings of a user-friendly and open-source 

TCAD semiconductor device simulator called Nano-

Electronic Simulation Software (NESS), developed 

by the Device Modelling Group at the University of 

Glasgow. NESS enables simulations, with increasing 

complexity and physical content within a unified 

environment. Open source also means that it allows 

collaboration and co-development by industry and 

academia all over the world. NESS is designed to be 

flexible, easy to use, and extendable thanks to its 

modular structure [14]. 

This paper is organized as follows. In Section 2, 

we provide a brief overview of the NESS structure. 

In Section 3, we discuss the structure generator (SG) 

module used for the generation of the mesh and 

device structure which are used as an input file for 

rest components of NESS. Section 4 provides a 

detailed overview of the numerical modules already 

implemented: DD, Kubo-Greenwood (KG) and, 

NEGF. Finally, in Section 5, we finish with the 

concluding remarks. 

https://doi.org/10.33079/jomm.20030404
mailto:cristina.medinabailon@glasgow.ac.uk
mailto:vihar.georgiev@glasgow.ac.uk
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Figure 1. Flowchart of NESS detailing its modular structure. 

 

2. Overview of NESS 

In this section, we provide an overview of our 

simulation environment NESS and its modular 

structure. Currently, there are five main components 

of NESS which are summarized in Figure 1: SG, 

effective mass extractor, material database, solvers, 

and outputs. First, the SG [15,16] (more details in 

Section 3) is used to generate and configure the 3D 

device structures such as nanowires (NWs), multi-

gate 3D device architectures, or bulk complementary 

metal-oxide-semiconductor (CMOS) transistors. It 

allows users to consider different semiconductor 

materials (such as Si, Ge, or III-Vs materials), 

doping configurations (such as uniform or Gaussian 

profiles), mesh designs, and the main variability 

sources (random discrete dopants (RDD), line edge 

roughness (LER), and metal gate granularity 

(MGG)). 

Second, as the effective masses strongly depend 

on the confinement orientation of the nanostructures, 

an automated routine to extract the effective mass 

from first principle simulations has been 

implemented in NESS [1]. It can calculate the correct 

electron confinement and transport effective masses 

from atomistic simulations (such as Density 

Functional Theory (DFT)) or semi-empirical models 

(such as Tight-Binding (TB)) of the electronic band 

structure of NW with the technologically relevant 

cross-sectional area, shape, and transport orientations.  

Third, the material database provides the 

relevant parameters for each material considered in 

the generated structure, such as the work-function, 

affinity, dielectric constants, mobility model 

parameters, or scattering parameters. Furthermore, 

the effective masses can be provided for each 

material from DFT and TB methods, or directly from 

our effective mass extractor. As illustrated in Figure 

1, those parameters serve as input for the solvers. 

Fourth, different transport simulation solvers [14] 

have been already implemented in NESS to simulate 

the mobility, the charge density, and the current in 

nano-CMOS devices. They have been implemented 

with a high degree of parallelism making use of MPI 

and OpenMP libraries. In general, each of them is 

self-consistently solved with the 3D Poisson and/or 

the 2D Schrödinger equations. Section 4 describes in 

details the three current main numerical solvers: (i) 

DD module, which contains different mobility 

models and Poisson-Schrödinger quantum 

corrections [17]; (ii) KG module, which calculates the 

low-field electron mobility; and (iii) the coupled 

mode-space NEGF solver, which captures quantum 

mechanical effects, coherent transport, and impact of 

scattering. Moreover, different enhanced modules 

and solvers [18] are currently under development in 

NESS including: density gradient; extension of the 

KG module [19] to consider surface roughness (SR), 

ionized impurity, and alloy scattering mechanisms; 

implementation of SR scattering mechanism in the 

existing NEGF module [20]; Kinetic MC solver [21] for 

the simulation of memory devices; module to 

compute the gate leakage current; and a full-band 

quantum transport solver in presence of hole-phonon 

interactions using a mode-space k·p approach in 

combination with the existing NEGF module [22]. 

Finally, the simulation results (i.e. current, 

electrostatic potential, charge concentration) are 

stored in text files and in vtk format for easy 

visualization with freeware software, such as 

ParaView.
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(a) (b) (c)

 

Figure 2. Some of the main primitive objects that can be used to create complex device structures. 

(a) (b)

 

Figure 3. Uniform and non-uniform mesh generation examples. 

 

3. Structure Generator 

In this section, we introduce the device SG and 

provide some examples. The SG is a flexible module 

capable of generating various types of devices and 

the corresponding structures (simulation domains). 

The generated device structure data file can be stored 

as a binary or ASCII format where the datasets are 

defined by the rectilinear grid with a regular 

topology along the coordinates. 

Creation of geometric objects: Users can create 

any type of polygon shape and three main types of 

geometric objects, which are (a) cuboid, (b) cylinder 

with circular cross-section and (c) cylinder with 

elliptical cross-section as shown in Figure 2. The 

simple elliptical shape (
2 2/ /z yz l y l+ ) assumes that 

the origin is located at (0,0,0), and implemented in 

NESS to create both cylinder types. When assigning 

material and doping properties to the mesh, NESS 

makes two important assumptions. Materials are 

considered as a property of an element defined by a 

volume of ( V x y z =    ). On the other hand, 

doping is assigned to a discretization node. Users can 

generate uniform (Figure 3(a)) and non-uniform 

(Figure 3(b)) meshes for their device structure. 

Bulk MOSFET and SOI example: Figure 4 

shows examples of conventional bulk MOSFET and 

fully depleted Silicon on Insulator (FDSOI) 

structures, generated using the NESS SG.  

Statistical variability: The contemporary 

CMOS transistors are highly susceptible to statistical 

variability and their performance and electrical 

characteristics could be significantly affected by it. 

The SG can introduce the main sources of statistical 

variability in the device structure prior to running the 

simulations. In NESS, users can choose from three 

sources of variability: RDD [23], LER [24], and MGG 
[25]; or they can run simulations considering all 

sources of variability or different combinations of 

them. Figure 5 shows a randomly generated 

atomistic device considering RDD and MGG in the 

simulation domain. 

 

 

(a) (b)

 

Figure 4. (a) Conventional bulk MOSFET, and (b) FDSOI. 

              
Figure 5. Atomistic device considering RDD and MGG. 
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Figure 6. (a) Transfer characteristics of the bulk MOSFET shown in Figure 4(a) at low and high drain bias for 

tox=1nm, 2nm using DD. Constant bulk mobility of 1400 cm2V-1s-1 was used.  (b) Impact of mobility models on 

the transfer characteristics of a nanowire FET with circular cross section having a diameter of 5nm and channel 

length of 15nm, NChannel=1015 cm-3 and NSD=1020 cm-3. The low field mobility used was 481 cm2V-1s-1 

calculated using the KG module including the impact of acoustic and optical phonon scattering mechanisms 

(Section 4.2). 

 

4. Numerical Solvers 

4.1 Drift-Diffusion 

The DD formalism for carrier transport has 

been the main workhorse in the TCAD industry for 

many decades. It is indispensable for simulating bulk 

CMOS transistors and relatively larger devices 

where a more sophisticated approach is neither 

desired nor practical. 

In NESS, we have implemented the DD module 

using a finite volume discretization scheme for the 

current continuity equation following the 

Scharfetter-Gummel approach [26] using Bernoulli 

functions. The 3D current continuity equation is self-

consistently solved with the 3D Poisson equation 

until convergence. Different mobility models are 

included in the current continuity equation. 

Convergence for potential and charge is reached 

when the max norm of the difference between two 

successive Gummel iterations reaches the preset 

criteria. At present, we have included doping 

dependence of the mobility using the Masetti model 
[27]. The transverse and longitudinal electric field 

( E⊥
, E , respectively) dependence of the mobility 

has been included by means of the Yamaguchi 

model [28] and the Caughey-Thomas [29] model, 

respectively. As examples, simulation results for a 

conventional bulk MOSFET with channel length of 

25nm for two oxide thicknesses are shown in Figure 

6(a), for low and high drain bias conditions 

considering constant bulk mobility. In Figure 6(b), 

we have shown the cumulative impact of the 

mobility models on the transfer characteristics for a 

nanowire transistor with a circular cross-section of 

5nm diameter and 15nm channel length. 

A key issue with classical DD simulations is 

that they cannot capture the quantum confinement 

effects. A quantum-corrected DD simulator can 

ensure a correct charge profile in the device at a 

fraction of the computational cost of a full quantum 

simulator. We have developed and implemented 

Schrödinger equation-based quantum-corrected DD 

approach in NESS [17]. For this, we first self-

consistently solve the 2D Schrödinger equation in 

planes perpendicular to transport and 3D Poisson 

equation in the whole device. The 3D quantum 

charge is calculated using a top of the barrier 

approach [30], summing over all subbands and valleys. 

At convergence, the quantum charge density (nQ) is 

used to calculate a quantum correction term 

/ log( / )B Q Ck T q n N  where NC is the conduction 

band density of states, T is temperature, kB is 

Boltzmann constant, and q is the electronic charge 
[31,32]. This term is then used to generate a corrected 

potential which (instead of the classical potential 

obtained from the Poisson equation) is used as a 

driving force in the continuity equation. This is 

repeated until the charge and the potential converge. 

The quantum correction can either be fixed for a bias 

point (for low drain voltage) or can be updated in 

each Gummel iteration. It is worthwhile to note that 

this approach does not use any fitting parameters in 

the quantum correction procedure unlike the density 

gradient or the effective potential method. 

The quantum-corrected DD remedies the 

deficiency of the classical DD charge profile as can 

be seen in Figure 7(a) for a nanowire FET with an 

5nm × 5nm square cross-section. Further, in contrast 

to the classical DD, current-voltage characteristics 

obtained using quantum-corrected DD display the 

shift in threshold voltage due to quantum 

confinement with is in an excellent match with the 

result obtained from ballistic NEGF as shown in 

Figure 7(b). 
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Figure 7. (a) 2D profile of electron density in a [110] oriented NW with 5nm × 5nm square cross section and 

LG=10nm for classical (left) and quantum-corrected (right) DD in the plane normal to transport direction at the 

middle of the channel at VGS=0.7V, VDS=0.05V. (b) IDS−VGS characteristics calculated using classical DD, 

quantum-corrected DD, and ballistic NEGF. Note that in these simulations, in case of NEGF and for charge 

calculation after solving Schrödinger equation in corrected DD, the Fermi level at the source, EFS is set to the 

quasi-Fermi level at the source contact as obtained in DD. The low field mobility used was 477 cm2V-1s-1 

calculated using the KG module. 

 

4.2. Kubo-Greenwood Module  

The KG solver implemented in NESS provides 

accurate electron mobility at low-field near-

equilibrium conditions [33,34]. It combines the 

quantum effects based on the 1D multi-subband 

scattering rates of the most relevant scattering 

mechanisms in confined channels [19] and the semi-

classical BTE by applying the KG formula within 

the relaxation time approximation [11]. In the first 

step, the NEGF module of NESS is used to extract 

the electron densities, subband levels (El), and the 

corresponding wavefunctions (ξl) at the cross-section 

area of a gated NW in the presence of a low electric 

field in the transport direction (the long-channel 

device approximation).  

In the second step, the 1D rates for the 

dominant scattering mechanisms in silicon are 

calculated using the parameters from the first step. 

The scattering rates are directly derived from the 

Fermi Golden Rule, using the time-dependent 

perturbation theory and assuming that the transitions 

between two states occur instantaneously. In this 

paper, we present two of the implemented scattering 

mechanisms:  

Acoustic (Ac) phonon scattering is considered 

to be elastic and within the short-wave vector limit. 

Its equivalent equation from an initial subband l and 

a final subband l’ is: 

 

( )
2

2 2

2 2

1 2

1 1
( , ) ( ) ( ) ( ) ,

Ac B v

Ac l l ll
s

D k T m
l k ds s s k E

q k q ku
  


 

 
  =  +  +    + + 

                  (1) 

 

where 
AcD  is the acoustic deformation potential, 

 is the material density,  is the reduced Planck’s 

constant, 
su  is the speed of sound, ml is the electron 

effective mass in the transport direction, s  are 

vectors normal to the transport direction, θ 

represents the step function, ( )k  is the kinetic 

energy for a wavevector with magnitude k, 

l l lE E E  = −  is the energy separation between 

subbands l and l’, and 
2

1/2 2

2lE m
q k k 

= −  + . 

Optical (Op) phonon scattering takes into 

account g-type and f-type transitions (intra- and 

inter-valley transitions, respectively) and the 

energies of the different branches of the optical 

deformation potential are considered constant (as 

used in most of the standard approaches). 

Accordingly, the optical phonon scattering rate for 

the phonon mode j can be written as: 
2

, 2 2
( , , ) ( ) ( ) ( ),

2

Op j

Op l ll
j

D
j l k ds s s dqG q 




  = 
     

(2) 

where 

( )

( ) ( )

2

1 2

2

3 4

( ) 1 1
( )
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,

j l j v

j l j v

n k E m
dqG q

q k q k
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q k q k


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 

−

 

+   
= + +  + + 

+ +   
+  + + 


 

(3) 

with
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Table 1. Main dimensions, doping values, and scattering parameters for the cylindrical Si NWs. 

 

Device 

Parameters 

 

Si width From 3nm to 6nm  

Scattering 

parameters 

DAc 14eV 

SiO2 width 0.8nm DOp,j (g-type) [5,8,30] ·109eV/m 

Doping 1015cm-2 DOp,j (f-type) [1.5,34,40] ·109eV/m 

Temperature 300 ωj (g-type) [0.01206,0.01853,0.063] eV 

Effect. Mass Ref. [1] ωj (f-type) [0.01896,0.0474,0.05903] eV 

 

 

Figure 8. Scattering rates and mobility comparison between the KG module from NESS and the 1DMC code 

from [10]: (a) Acoustic and optical phonon scattering rates of the first subband of valley X3 as a function of the 

total energy for a 3nm circular NW with a line density of 3.6×105cm-1 and ⟨100⟩ orientation. (b) Phonon-

limited electron mobility as a function of the line density for 3nm and 6nm circular NWs with ⟨100⟩ orientation. 

(c) Phonon-limited electron mobility as a function of the width for circular NWs with a line density of 

3.6×105cm-1, ⟨100⟩ and ⟨110⟩ orientations. 

 

 

2

1/2 2

2

3/4 2
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2
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,

;

q and 
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
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          (4) 

Here, nj is the phonon number, ωj is the phonon 

energy, DOp,j is the optical deformation potential, and 

mv(mv’) is the transport effective mass of the 

initial(final) valleys, respectively. 

In the third step, the mobility (
l

i ) for the 

scattering mechanism i and subband l is calculated 

considering the semi-classical simulation of the 

transport properties of a 1D electron gas using the 

BTE within the relaxation time approximation [11] as 

a function of the relaxation time ( ( ) 1/ ( )l l

i iE E =  ), 

the 1D density of states (gl), the Fermi-Dirac 

function (f0), and the 1D electron concentration (Nl): 

( ) ( )0 0

2
( ) ( ) ( ) 1 ( ) .l l

i l l i

B l l

q
dEg E E E E f E f E

k TN m
 = − −

(5) 

In the fourth step, we calculate in two strategies 

the total mobility for the l subband (μl): (1) it is 

calculated as a function of the individual mobilities 

associated with each scattering mechanism (
l

i ) 

using the Matthiessen rule (1/ 1/l l

ii
 = ); and (2) 

the scattering rates of all mechanisms are directly 

added to avoid the Matthiessen rule and thereby μl is 

computed using Equation (5). The former strategy is 

of special interest for devices with large cross 

sections because the error induced by the 

Matthiessen rule in narrower devices is comparable 

to MS-MC and NEGF approaches. Finally, the 

average mobility of a NW structure is calculated 

accounting for all the subbands: 

/l

NW l ll l
N N =  . The advantage of both 

semi-classical alternatives in comparison to purely 

quantum transport simulations is that the rates are 

individually computed and then combined, reducing 

dramatically the computational cost. 

Figure 8 shows the scattering rates and mobility 

for cylindrical Si NWs, which main parameters are 

summarized in Table 1. The results from the KG 

module have been compared to the results of an 

external to NESS 1DMC simulator [10], where the 

mobility is extracted after applying a small constant 

electric field by fitting the average velocity versus 

field dependence. In general, the 1DMC and KG 

scattering rates for the lowest subband of the 3nm 

nanowire (Figure 8(a)) are in very good agreement 

especially at low energy levels, the most relevant 

region which determines the accuracy of the low-
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field mobility calculations. Moreover, the phonon-

limited mobility computed with both approaches 

shows a very good agreement as a function of the 

line density (Figure 8(b)) for a 3nm and 6nm circular 

NW with ⟨100⟩, and as a function of the NW widths 

(Figure 8(c)) at a fixed line density for ⟨100⟩ and 

⟨110⟩ orientations 

4.3. NEGF 

The so-called NEGF formalism, which is 

derived based on the Keldysh technique [35], is a 

widely applied framework for analyzing the 

electronic transport in non-equilibrium many-body 

systems. This method allows a quantum treatment of 

charge transport in order to capture quantum 

phenomena such as tunneling, coherence, and 

particle-particle interactions in mesoscopic and 

nanoscale devices. We obtain the charge density, 

potential profile, and the current flow in the system 

by performing a self-consistent solution of the 

Poisson equation and the NEGF transport equations 

in coupled-mode space (CMS). We can either 

consider diffusive transport by switching on the 

acoustic- and/or optical-phonon scattering [36,37] to 

enable electron-phonon (e–ph) interactions within 

the self-consistent Born approximation (SCBA) or 

neglect them to investigate merely the ballistic 

transport [13]. Moreover, we can simulate 2D planar 

structures such as DGSOI [38], and the NEGF solver 

implemented in NESS also allows calculation of the 

band-to-band tunneling by using the Flietner model 

to compute the current in heterostructures with a 

direct bandgap [39].  

Adopting the notation of Reference [14], we 

will summarize the main concepts required to 

understand the NEGF formalism. Having the system 

in a steady state, the retarded, advanced, and 

lesser/greater Green’s functions in real space 

representation read: 

†1
( ) , ( ) ( )

( ) (
,

)

R A R

R
G E G E G E

E i I h E
 = =  +  − −

(6) 

( ) ( ) ( ),R AG G E E G E=              (7) 

where, h, and 
( )R  represent the one-particle 

Hamiltonian, and the retarded (lesser/greater) self-

energies accounting for electrons interactions with 

their surroundings, respectively. The charge at 

position r and the current take the forms: 

( )( ) , ;
2

i
n r dE G r r E



 = −       (8) 

 1, , 1

2 | |
( ) Tr 2Re

2
l l l l

q dE
j l h G





+ +


 = 
    (9) 

Here 1, , 1)(l l l lh G 

+ +  indicates the matrix elements of 

the Hamiltonian (lesser Green’s function) between 

the basis states in layer l +1 (l) and l (l +1) [12,40]. 

Before considering the e–ph interactions, let us 

briefly discuss the CMS approximation. The single-

particle Hamiltonian in the EM approximation can 

be expressed as: 

2 2 2

,* * 2

, ,

( )

( )
2 2

T L

y z

y z y z

h r h h

V r
m m x

= +

  
= −  + − 

  

  (10) 

 

We can obtain the CMS representation by 

projecting each diagonal block ,n nh  of 
Th  on a 

subspace spanned by some chosen eigenmodes 

( , ; )i y z n  of ,n nh  [41]. The transformation matrix is 

unitary in the limit where all the transverse modes 

are selected and, consequently, the CMS 

Hamiltonian is exactly equivalent to the real space 

Hamiltonian. On the other hand, the CMS 

Hamiltonian with few chosen modes is equal to the 

full rank EM Hamiltonian on the chosen subspace, as 

it reproduces by construction the exact selected EM 

sub-bands and their wavefunctions. Therefore, CMS 

offers the possibility to reproduce the effect of 

roughness or ionized impurities if enough modes are 

chosen. In this approximation, the matrix elements 

between the modes i and j read 

( )

( ) ( )

,

* ,

, ', '

, ; ', ;

( , ; ) , , ; ', ', '; ', '; '

R

R

y z y z i j

l i l j E

y z l

G

G l y z l y z E y z l 

=

   

(11) 

To study the diffusive transport, the interactions 

of the electrons with phonons is implemented within 

the NESS via introducing the corresponding self-

energies in real space [42,43]: 

ac, ac( ; ) ( ; ),v vr E M G r E  =   (12) 

 

 

( ) ( ) ( )
2

( ) , ' ( ) ( )

op, , ' , ' , '( ; ) ; ( ) 1 ; ( ) ,v v

v q v q B q v q B q v qr E M n G r E n G r E        =   − + + +  + −
                  (13) 
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Figure 9. (a) The current spectrum in μA/eV for a NW with a square cross-section of 3nm×3nm and 

LG=10nm calculated in the diffusive limit including e-ph scattering for ON-state (VG=0.6V). The 

Fermi level at the source is the energy reference and VDS = 0.6V. Moreover, the first subband of 

each valley is indicated with a white dashed line. The solid line corresponds to the potential along 

the transport direction which is the same as the first subband. IDS−VGS characteristics for n-type 

square 3nm×3nm Si NW assuming ballistic and dissipative NEGF transport simulations with: (b) 

LG=20nm and low VDS using the classical DD and the NEGF modules (including a combination of 

acoustic (Ac) and g-type optical (Op) phonon scattering mechanisms); and (c) LG=10nm and 

LG=20nm at VDS = 0.6V. 

 

where v, q, and ,B qn  refer to the electronic valley 

index, optical phonon with energy q , and the 

Bose-Einstein occupation number. The coupling 

constant of acoustic phonons 
acM , and the coupling 

strength of e–ph interaction 
, 'v v

qM are obtained from 

the deformation potential theory [44]. The retarded 

component of the self-energy stemming from e-ph 

interactions may be expressed as: 

R 1
( ; ) ( ; ) ( ; ) .

2
r E r E r E   =  −          (14) 

Its CMS counterpart has the same form, whereas the 

real space self-energies are replaced by the CMS 

ones. Following the same notation as in Equation 

(11), and assuming that the self-energies are local in 

both space and time, the self-energies due to e-ph 

interactions in CMS representation read [45]: 

,

ac ,,
( , ; , ; ) ( ) ( , ; , ; )i j

ac k lk l
x i x j E M F x G x k x l E  =   

(15) 

 

( )
2

( ) , , ' ( )

, , ,, , ' '

1 1
( , ; , ; ) ( ) , ; , ; ( ) .

2 2

i j v v

op v k l q B q qk l q v vx i x j E F x M n G x k x l E      
 = +    

  
             (16) 

 

We can define the total retarded (lesser) self-energy 

as 
( ) ( ) ( )

Scat

R R R

C

   =  +  , where ( )R   refers to the 

impact of electron exchange with the contacts [14]. 

In Figure 9(a), we show the ON-state-current 

spectrum resulting from the simulations for a 3nm × 

3nm square NW transistor including scattering 

processes at VDS = 0.6V.  The tunnelling current 

reaches high values up to 30 μA/eV. Overall current 

damping is observed due to acoustic phonons and 

energy relaxation of carriers as they approach the 

drain due to optical phonons emission. Figures 9(b) 

and (c) show the IDS−VGS characteristics for a n-type 

3nm × 3nm square Si NW assuming ballistic and 

dissipative NEGF transport simulations. Figure 9(b) 

shows the results with LG=20nm using the classical 

DD and the NEGF modules (Ac, g-type optical Op, 

and a combination of both phonon scattering 

mechanisms) at low drain voltage, whereas Figure 

9(c) compares the results with LG=10nm and 

LG=20nm at VDS=0.6V. More results from the NEGF 

module of NESS are presented in [1,14,15,16,18,20,22,39]. 

5. Conclusion 

In this paper, we have described the 

organization and features of NESS - the new state-

of-the-art device simulator from the Device 

Modeling Group at the University of Glasgow. We 

have highlighted the philosophy behind the project 

and demonstrated the capabilities of the various 
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modules that are ready for release as open-source 

software. NESS encompasses everything that is 

required for modern nanodevice simulation – a tool 

for structure generation, effective mass extractor, 

low-field mobility simulator, and a large array of 

carrier transport solvers – ranging from classical to 

semi-classical and quantum formalisms. There are 

several new modules under active development. We 

hope the device community will find NESS useful 

for advanced device research. 
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First-principles Simulations of Tunneling FETs Based on van der Waals 

MoTe2/SnS2 Heterojunctions with Gate-to-drain Overlap Design 
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Huaxiang Yin1, Zhenhua Wu1,2, ** 
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Abstract: The electronic properties and transport properties of MoTe2/SnS2 heterostructure 

Tunneling FETs are investigated by the density functional theory coupled with non-equilibrium 

Green’s function method. Two dimensional (2D) monolayer MoTe2 and SnS2 are combined to a 

vertical van der Waals heterojunction. A small staggered band gap is formed in the overlap region, 

while larger gaps remain in the underlap source and drain regions of monolayer MoTe2 and SnS2 

respectively. Such a type-II heterojunction is favorable for tunneling FET. Furthermore, we 

suggest short stack length and large gate-to-drain overlap to enhance the on-state current suppress 

the leakage current respectively. The numerical results show that at a low drain to source voltage 

Vds = 0.05V, On/Off current ratio can reach 108 and the On-state currents is over 20 μA/μm for n-

type devices. Our results present that van der Waals heterostructure TFETs can be potential 

candidate as next generation ultra-steep subthreshold and low-power electronic applications. 

Keywords: 2D materials heterojunction, tunnel-FET, gate-to-drain overlap, DFT-NEGF. 
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1. Introduction 

The downscaling of field-effect-transistors 

(FETs) to sub-5nm and more advanced technical 

node is following the Moore’s law and approaching 

their physical limitations with traditional silicon 

FETs. Recently, the discovery of two-dimensional 

materials in 2005 [1], has opened a brand-new 

concept to semiconductor engineers who are seeking 

new materials for replacing the silicon and 

improving the performance of semiconductor device. 

Two-dimensional (2D) material-based 

semiconductor has been acknowledged as a 

promising option for the next-generation electronics 

because of their uniform atomic thickness, smooth 

surface and excellent gate electrostatic controlling 

ability. With the development of the significant 

advances in nanotechnology, in the past few years, 

2D material field effect transistors (FETs) have 

drawn a lot of attentions with several 2D materials, 

such 2D MoS2 
[2-4], 2D InSe [5, 6], black phosphorus 

(BP) [7-9], 2D Bi2O2Se [10] and so on [11-14]. 

The potential of these materials has not been 

thoroughly investigated, and the development of 

manufacturing atomically thin van der Walls 

heterostructures gives rise to new opportunities [11, 14]. 

More and more experimental works have focused on 

the properties of plane heterojunction and stacked 

heterojunction [3]. According to the recently 

researches, high quality 2D SnS2-based FETs have 

been measured and their ultrahigh on/off current 

ratio can reach to 108, which is higher than that of 

BP and other 2D materials FETs [15-16]. As for 2D 

MoTe2 material, it has been fabricated all-2D-based 

FETs which also can reach quite high mobility (over 

20 cm2V-1s-1) and on/off current ratio about 105 [17]. 

However, 2D materials FETs need to satisfy high 

speed and low energy dissipation applications, which 

means a lot of challenges exist [18]. As an alternative 

application, band-to-band tunneling FETs combine 

with stacked 2D heterojunction can be potential 

candidates. Importantly, TFETs can make a 

breakthrough in subthreshold slope (SS) reduced 

below 60 mV/dec and have a quite low OFF-state 

current [19]. In ultra-thin vertical heterojunctions, the 

tunneling distance is reduced to the minimum, which 

affords the possibility to achieve higher ON-state 

https://doi.org/10.33079/jomm.20030405
mailto:zhangslvip@njust.edu.cn
mailto:wuzhenhua@ime.ac.cn


Luo et al.: First-principles Simulations of Tunneling FETs Based on van der Waals MoTe2/SnS2 

Heterojunctions with Gate-to-drain Overlap Design 

J. Microelectron. Manuf. 3, 20030405 (2020) 2  

current. Furthermore, 2D TFETs can effectively 

control the leakage of direct source-to-drain 

tunneling and do not have an influence on band-to-

band tunneling because of the staggered band 

alignment when two layers are stacked together [20-22]. 

Finally, it is expected that a higher on/off current 

ratio and lower SS will be achieved while the 

tunneling occurs between two different monolayer 

2D materials.  

In this work, we investigate a stacked 

heterojunction tunneling FET based on van der 

Waals MoTe2/SnS2 heterojunctions (see Figure 1) 

with gate-to-drain overlap. MoTe2 and SnS2 are two 

semiconductors with relatively larger band gaps and 

their stacked structure has the staggered band 

alignment which is desired to achieve high on-state 

tunneling current with acceptable leakages [23-24]. The 

two materials have high carrier mobility, i.e., hole 

mobility of MoTe2 is about 200 cm2V-1s-1 [25] and the 

electron mobility of SnS2 can reach about 1398 

cm2V-1s-1 [26]. The type-II heterojunction with a small 

staggered band gap is formed for tunneling 

transistors [20]. Furthermore, short stack length and 

large gate-to-drain overlap (see Figure 2) are 

proposed to enhance the on-state current suppress the 

leakage current respectively. We employ the density 

function theory (DFT) method to study the basic 

electronic properties of monolayer MoTe2 and SnS2. 

Then, the transport properties of the double gate 

stacked structure are calculated by Non-Equilibrium 

Green's Function (NEGF) method. The merits of the 

proposed TFET, including local density of state 

(LDOS), on-state current and SS, are compared with 

monolayer MoTe2 n-TFET. The device performance 

of the MoTe2-SnS2 TFETs presents the great 

potential for future semiconductor applications. 

2. Simulations Methods 

Most of previous studies utilize Tight-binding 

Non-Equilibrium Green's Function (TB-NEGF) 

method to predict the device performance with new 

materials and operation mechanisms. It is a good 

compromise between the computational costs and 

the coverage of quantum transport feature. For 

example, one typical TB Hamiltonian employs 

Slater-Koster (SK) parameters by fitting the 

electronic structure from DFT method [27]. The 

transport properties are calculated utilizing the fully 

quantum mechanical NEGF formalism. Note that 

DFT includes exchange correlation potentials as well 

as external potentials, to generate the accurate energy 

band. However, based on SK parameters by fitting 

the band of DFT, TB only considers the external 

potential to self-consistently solve the potential field. 

The calibration and setup of TB parameter library for 

new materials can be tedious and tricky. In this work, 

the calibration-free DFT-NEGF method is used to 

investigate the tunneling FETs based on van der 

Waals MoTe2/SnS2 heterojunctions, i.e., using the 

DFT to calculate the Hamiltonian and electrostatic 

properties of the device; using NEGF to determine 

non-equilibrium statistics for constructing density 

matrix; using real Space numerical methods to 

calculate transport properties and the boundary 

conditions for open device structures [28]. High 

precision can be achieved by using DFT-NEGF, but 

at expense of computational issues in speed and 

memory limits.  

At present, the mainstream DFT-NEGF 

programs are able to simulate 5000 atomic-scale 

structures or devices effectively, but larger-scale 

computational simulations still have difficulties to 

overcome. If the number of atoms is further 

increased, there will be insufficient memory. The 

scale of parallel processes is another limitation. The 

parallel computing efficiency is poor as the 

employed CPU cores are increased. This is mainly 

due to the inefficient use of computing resources. We 

develop the DFT-NEGF calculation method for this 

specific application of MoTe2/SnS2 TFET in the 

following aspects, 1) the matrix distributed 

calculation mode is introduced; 2) optimize the 

Poisson equation and Green's function solution 

algorithm under specific boundary conditions; 3) at 

the same time, optimize the linear combination of 

atomic orbitals (LCAO) basis [28-29] set of each 

element involved in the tunneling transistor  to 

reduce the matrix dimension without reducing the 

calculation accuracy and improve the calculation 

ability. The details are beyond the scope of this paper 

and will be reported elsewhere. The calculations in 

this work are based on the Nanodcal packages with 

the aforementioned updates [28]. 

3. Results and Discussions 

In order to precisely calculate the electronic 

states properties of the MoTe2-SnS2 heterojunction 

model, we employ the DFT based ab-initio package 

Nanodcal. The generalized gradient approximation 

(GGA) of Perdew, Burke, and Ernzerhof (PBE) is 

applied for the exchange-correlation interactions, 

which can exactly present band gap values in good 

agreement with experiment results for monolayer 2D 

materials. The energy cutoff is 500 eV and the 
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Figure 1. (a-c) basic structure of MoTe2, SnS2 and heterostructure, the permittivity cell is covered by the 

shadow area contained three atoms; (d-f) Band structure and density of states of intrinsic MoTe2, SnS2 and 

MoTe2-SnS2 heterostructure. 

 

 

Monkhorst-Pack k points are set as 9 x 9 x 1 without 

spin-orbit coupling. The convergence criteria for 

energy and force are 10-4 eV and 10-3 eV/ Å. The 

relaxed monolayer MoTe2 and SnS2 are shown in 

Figure 1 (a) and (b) with the lattice constants being 

3.56 Å and 3.70 Å respectively. And the 

heterostructure is built after applying strain to both 

two materials so as to obtain the same lattice 

parameter a0 = 3.625 Å as shown in Figure 1 (c). To 

study the basic properties of monolayer MoTe2 and 

SnS2, the band structure of two materials is 

calculated along the high-symmetry path (K-Γ-M-K) 

in Brillouin zones. As shown in Figure 1 (d)-(f), the 

band structure of intrinsic monolayer MoTe2 has a 

1.10 eV direct band gap at K point, like the other 

traditional 2D semiconductor materials. And 

monolayer SnS2 has an indirect gap of about 1.61 eV 

that is an applicable value as the channel material of 

MOSFETs. Combined two materials, it formed a 

system that is a type-II heterojunction with a 0.29 eV 

indirect band gap which is larger than the band gap 

of another similar combination of 2D material stack, 

i.e., WTe2-MoS2 (0.16 eV) [23]. Compared all three 

band structures, it is obvious that the valence band 

maximum (VBM) is contributed by MoTe2 at K and 

the conduction band minimum (CBM) is contributed 

by SnS2 at M. Therefore, if the transport axis is 

along the M-K direction, the momentum is 

conserved in the periodic direction and the tunneling 

process can be formed along the transport direction 

due to the variation of electrostatic potential. 

The device band edges schematics demonstrate 

the mechanism of the MoTe2-SnS2 TFETs as shown 

in Figure 2 (a). The Type II band alignment can 

effectively keep the tunneling window of channel. 

Note that the interaction of the stacking edge has a 

dramatically deviation of the band structure, as 

compared with monolayer or heterostructure, which 

dominate the tunneling on current of the TFET. 

Longer heterostructure length can hardly enhance the 

tunneling on current since the bands are rather flat in 

the middle region, but leads to larger channel 

resistance. On the other hand, very short 

heterostructure length also leads to TFEF 

performance degradation due to the direct source to 

drain tunneling. 

To obtain multi-objective optimization for on-

state current and off-state current trade-offs, the 

schematics of TFETs device with gate-to-drain 

overlap design is presented in Figure 2(b). The 

distance between MoTe2 and SnS2 layers is 6.4Å, 

which is optimized by optB86 exchange correlation 

functional method. To avoid the influence of 

mismatch, monolayer MoTe2 is applied 2.1% tensile 

strain and 2.0% compressive strain is for SnS2, 

which can keep lowest mismatch. For the whole 

TFET device structure, the total number of atoms 

exceeds 360. As shown in Figure 2 (b), the out-of-

plane vacuum separation of the device is fixed as 2 

nm, which is equal to the distance between the top 

and bottom gates. Spin-orbit coupling is excluded. In 

our work, we investigate the influence of EOT 
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Figure 2. (a) Band alignment schematic in the device along the transport direction with flat band condition; (b) 

Schematic of the double-gate MoTe2-SnS2 heterostructure TFETs with gate to drain overlap. 

 

                     

Figure 3. (a) The variation of off-state current with different length of gate-to-drain overlap between 

heterostructure to drain. With the increasing of length, the leakage of drain can be effectively suppressed at the 

same supply voltage; (b) LDOS of the TFETs with different gate-to-drain overlap length at Vgs = 0V. 

 

variation for the performance of TFETs device. The 

default effective oxide thickness (EOT) is set to 0.5 

nm with effective κ=3.9. For the gate voltage, the 

bias is only applied to the top gate and the bottom is 

set as ground. In the case of n-type device, the 

source side is doped to p-type and the drain side is 

doped to n-type. Both the source and drain doping 

concentration reach 1013 cm-2. And the intrinsic 

materials are employed for the channel because the 

device performance is insensitive to the doping 

concentrations. The supply voltage is set as Vds = 

0.05 V in all the following simulation. In this 

condition, the self-consistent electrostatic and 

transport calculation for each gate bias point spends 

about 18 hours of wall time by using 144 CPU cores. 

Firstly, we investigate the impact of length 

variation from heterostructure to drain (gate-to-drain 

overlap) on the device properties. The heterojunction 

length is fixed to 3 nm. As shown in Figure 3, the 

leakage can be effectively reduced with increasing 

the length of overlap. At Vgs = 0 V, the Off-state 

current of 4 nm overlap is as large as 10-7A/μm and 

it can be reduced to 10-13A/μm with 9 nm overlap 

condition. It indicates that electrons in the VB of 

MoTe2 have a high probability of tunneling into the 

CB of SnS2 without gate voltage at short overlap 

region. The gate-to-drain overlap design gives rise to 

good optimization for Ion and Ioff trade-offs as 

compared to normal TFET in previous studies [20] 

(see Table. 1). The 9 nm gate-to-drain overlap
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Table 1. Heterojunction length and corresponding device key merits. 

Heterojunction Length (nm) Ioff (A/μm) Ion (A/μm) Ion/Ioff SS (mV/dec) 

3 
(this work) 

2.05E-12 5.77E-04 108 37 

6 
(this work) 

2.38E-14 1.46E-04 1010 42 

20 
 [Ref 20] 

1E-12 7.5E-5 107 <60 

 

 
Figure 4. (a) Id -Vgs transfer properties. The solid lines represent the transport characteristics of heterojunction 

with different heterojunction length region and the dashed lines demonstrate transport properties of single-layer 

MoTe2 TFET; (b) LDOS of the TFETs with different gate voltages. 

 

structure is selected as the basic TFET structure to 

calculate following transport characteristic. In 

addition, as increasing EOT from 0.5 nm to 1 nm, 

the performance of TFET device present the 

degradation tendency, e.g., the subthreshold slope 

drops to 48 mV/dec and the Ion/Ioff ratio decreases 

about an order of magnitude. To achieve optimal 

performance, thin EOT of 0.5 nm is selected in the 

following calculations. 

Then, the transport properties of n-type device 

are simulated by the DFT-NEGF method. The Id-Vgs 

curve of the MoTe2-SnS2 TFETs is shown in Figure 

4 (a). It is obviously that the sub 60 mV/decade 

subthreshold swing is obtained as about 37 

mV/decade. By fixing the Off-state current of the 

device to 10-6 μA/μm, the current can achieve about 

20 μA/μm. For benchmark, the transfer 

characteristics of a single-layer MoTe2 TFET is also 

simulated. The SS is not notably below the limitation 

of MOSFET and the On/Off current ratio only reach 

to about 105 due to the short channel length. The 

mechanism of n-type TFETs is demonstrated in 

Figure 4 (b), which presents the LDOS of the TFETs 

with the different gate voltage. At Vgs = 0V, 

tunneling path does not exist because the VBM of 

MoTe2 is located below the CBM of SnS2 in the 

channel region, which also proves that the buffer 

layers of both two side is long enough to keep the 

minimal impact of the leakage. With the increasing 

of gate voltages, the CBM of SnS2 is dropped down 

faster than the VBM of MoTe2, on account of the 

effectively modulation of SnS2. At Vgs = 0.35V, 

electrons in the VB of MoTe2 are gradually enter 

into the CB of SnS2 at the center of the channel. 

They can tunnel from the source of MoTe2 cell into 

the drain because the CBM is getting lower in the 

monolayer than in the heterostructure. In the On-

States, the bands of MoTe2 and SnS2 are totally 

changed in the overlap region when the gate voltage 

is over 0.4 V. Electrons can freely cross through the 

whole stacking area at high gate voltage. This 

indicates that the MoTe2-SnS2 TFETs can have 

better performance compared with single-layer 2D 

materials MOSFETs. 

Based on this result, we further investigate the 

influence of increasing the heterojunction region 

length from 3 nm to 6 nm. On one hand, the length 

of the stacking region cannot markedly enhance the 

on-state current. On the other hand, it leads to a 

better control of the off-state current as shown in 

Figure 5. As the data presented in Table 1, the on-

state current of short heterostructure length TFET is 
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Figure 5. LDOS of TFETs with different heterojunction length at On/Off states. At Vgs = 0V, the device of 6nm 

presents more effective. 

 

similar to the longer heterojunction length. The 

band-to-band tunneling and the direct source-to-

drain tunneling are essential in the tunneling 

processes. The longer heterojunction length device 

can be effectively suppressed the leakage arising 

from the direct source-to-drain tunneling, but does 

not notably affect the on-state current due to the 

band-to-band tunneling. 

4. Conclusion 

In this work, we investigate the electronic 

properties of a MoTe2-SnS2 heterostructure by DFT, 

which gives rise to a small staggered gap in the stack 

overlap region and large gap in the source drain. 

Based on this heterostructure, a double-gate n-type 

TFET with gate-to-drain overlap has been designed 

and calculated by DFT-NEGF. At a low supply 

voltage Vds = 0.05V, On/Off current ratio reaches to 

108 and the subthreshold swing is well below the 

thermal limitation of traditional Silicon MOSFET. It 

is reasonable that 2D van der Waals heterostructures 

have a great potential in next generation of ultra-

steep subthreshold and low-power applications. 
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Abstract: During the past decade, significant progress has been achieved in the application of 

material modeling to aid technology development in semiconductor manufacturing companies 

such as Intel. In this paper, we review examples of applications involving a complex set of 
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1. Introduction 

In the past thirty years, semiconductor modeling 

in industrial TCAD (Technology Computer Aided 

Design) has undergone incredible change. Over this 

period, device engineering has evolved dramatically 

with the introduction of the FinFET, novel materials, 

and strain. In addition, the concentration of 

fabrication facilities within just a few large 

companies has resulted in TCAD departments 

becoming more active in conducting in-house 

research versus relying on external sources.  

However, the single biggest change for TCAD is 

undoubtedly the scale of the problems it now tackles. 

In the 1990’s, TCAD was concerned almost solely 

with simulating device performance, which meant 

figuring out how to control short channel effects 

(SCE) as the gate length shrunk by simulating 

various S/D and well engineering options. The 

modeling domain for this problem was confined to 

100’s of nanometers. Today, the scale of problems 

extends over 8 orders of magnitude. Stress 

engineering has moved the simulation domain 

beyond the device itself to including neighboring 

structures which also impacts the mechanical stress 

in the channel. Parasitic effects like latch-up and 

reliability phenomenon such as ion strikes require 

even larger scale simulations. At the upper end, 

calculating attributes such as die temperature, which 

requires simulating the heat generated from every 

transistor and interconnect, has extended the domain 

to millimeters. On the small end of the scale, features 

of the device such as fin width are now down to a 

countable number of atomic layers. As a result, 

TCAD must rigorously calculate quantum effects 

such as confinement and tunneling and also 

fundamental material properties, which depend not 

only on the novel materials employed but also on the 

specific number of layers. At the atomic scale, the 

impact of defects, which can cause changes in 

intrinsic strain, leakage, and resistance in 

semiconductors and metals, are now routinely 

estimated with modeling. TCAD is even tasked with 

simulating the properties of individual molecules 

such as adhesion and selectivity to help down select 

the reagents used in process steps such as Atomic 

Layer Deposition (ALD). As technology continues to 

scale, device and process modeling is evolving into 

an extended materials problem.  

As a result, material modeling (MM) has 

become an essential part of TCAD domain along 

side more tradition disciplines. While scaling 

provides the motivation for this evolution, what has 

made MM possible is the tremendous progress in the 

development of computational methods for many-

body interacting systems[1] and the incredible 

advances in computing power [2]. The role of MM in 

TCAD is twofold. On one hand, MM is used to 

analyze the behavior of novel structures and 

materials on the atomic to nanometer size scale. On 

https://doi.org/10.33079/jomm.20030406
mailto:boris.voinov@intel.com
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the other hand, researchers also resort to MM when 

the validity of parameters used in macroscopic 

simulations, which are based on continuous models, 

become questionable, such as when materials are 

employed at such a minute scale that their bulk 

properties no longer apply. A good example of this is 

understanding the heat transfer across the interface 

of two dissimilar materials[3]. In the case of 

nonmetals, where phonons are responsible for the 

energy transfer, the continuous heat transfer (Fourier) 

model fails at a length scale comparable to the 

average phonon mean free path, giving rise to the 

interface thermal resistance. From the macroscopic 

point of view, the temperature looks discontinuous 

on the interface, but by employing an MM approach 

such as molecular dynamics (MD) simulation[4], the 

energy flux can be calculated and used to extract the 

coefficient of interface thermal resistance, which can 

then be inserted into the continuous heat transfer 

model. 

 
Figure 1. Time and length scales and schematics of 

methodologies of material modeling. Arrows show the 

information flow between methodologies. 

Overall, the limitation of continuum models is 

that most assume certain constitutive relations to 

describe material properties, e.g. stress versus strain 

dependence for mechanical properties or diffusivity 

dependence on the temperature. These assumptions 

are clearly violated on the nanoscale.  In contrast, 

when one is applying an MM approach, the only 

assumption is how atoms or molecules interact 

directly with each other. This interaction can be 

treated as either classically or quantum mechanically. 

In the classical case, the system energy is 

represented as a sum of contributions from a pair or 

many-body potentials over all atoms in the system. 

In the quantum treatment, the energy of electrons 

interacting with both ions and other electrons and the 

ions among themselves are calculated using the 

quantum theory of many-body systems. There are 

numerous methods for these calculations; among 

them, the Density Functional Theory (DFT)[5] is the 

most frequently used approach. It worth noting that 

in a TCAD context, the material subject to modeling 

is, as a rule, assumed to be in the solid state. 

2. Applications of Material Modeling 

Table 1 shows a brief list of MM applications 

that are relevant to semiconductor technology 

development and are currently in use in industrial 

TCAD. This list is not comprehensive and focuses 

primarily on applications in TCAD’s traditional 

scope. The objective of this section is to elaborate on 

the content of this list. 

Historically, the aim of statistical physics and 

condensed matter theory was the calculation of bulk 

properties of pure and compound homogeneous 

materials, where it achieved remarkable progress. To 

a greater degree, this progress was attributed to the 

fact that, for an ideal crystal, lattice electron wave 

functions can be relatively easy constructed as well 

as quantum mechanically methods to self-

consistently account for non-weak many-body 

interactions in solids[6]. In today’s DFT based 

computational tools, the analogous problem is 

choosing an appropriate electron basis function 

(either plane waves or atomic orbitals depending on 

the type of material – metal or non-metal) and a 

exchtheofformsuitable ange-correlation 

functional[5] requiredon’tcalculationsThese.

significant computational resources since just a 

single crystal cell can be used to deliver a wide 

propertiesmaterialofvariety  including: the 

geometry of the crystal cell minimizing the total 

thus matandenergysystem itsdensity,erial

formation (cohesive) energy, elastic moduli as 

derivatives of the total energy versus the cell volume 

and strain, etc. A more extended theory allows the 

definition and quantification of the effects of 

elementary quantum excitations in solids – 

quasiparticles such as electrons, holes, and 

phonons[7]. Most available DFT packages[8] can 

calculate properties of these particles such as band 

structure and the phonon spectrum. With this 

information, one can assess transport and thermal 

material properties at finite temperatures such as heat 

capacity, thermal and electrical conductivity. This is 

for an ideal crystalline material, which allows the 

reduction of the computational domain to a single 

lattice cell and limits the number of atoms under 

consideration to just a few, explaining why the 



Voinov et al.: Material Modeling in Semiconductor Process Applications 

 

 

  J. Microelectron. Manuf. 3, 20030406 (2020) 3  

Table 1. Material modeling applications. 

Application domain Properties of interest 

Pure and compound bulk materials  Equilibrium structure, stability, equation of state, 

mechanical, thermophysical, heat and electric transport, 

electronic structure, vibration spectra   

Point and extended defects Structure, formation energy, electronic structure, optic 

absorption, diffusivity, fracture, plasticity    

2D heterostructures, interfaces, thin films, free surfaces  Structure and defects, stability, transport, electronic 

structure, surface reconstruction and chemistry  

Atomistic processes, etching, deposition, epitaxial growth Selectivity, byproducts yield, effect of process conditions, 

microstructure formation and evolution, material damage 

and recrystallization 

3D nanostructures Grain structure, contacts, conductance, strain, effect of size 

 

computational burden for this sort of calculation is 

modest. It should be noted that the complex quantum 

computations above can be bypassed if a sufficiently 

accurate interatomic interaction potential is known a 

priori which allows calculation of the total system 

energy. More details about this approach are 

described in Section 3. 

The situation changes in real materials where 

nonuniformities, such as defects, are present.[9] 

Defects profoundly affect material properties on the 

nanoscale. In this situation, one faces a dilemma on 

how to construct the simulation domain, i.e. place 

the defect into a simulation “box” with periodic 

boundary conditions or insert it into a finite sample 

of the crystal lattice. In the first case, an artificial 

periodic lattice of defects will arise, which requires 

devising a physical way to account for their 

interaction energy, especially for charged defects. In 

the second case, one needs to extend the size of the 

box to ensure the results aren’t sensitive to the 

boundary conditions. In both cases, a system with 

defects becomes much more computationally 

challenging to simulate compared to ideal crystals.  

Additional complications arise when we account for 

defect migration in realistic systems, where the 

positions of the lattice atoms are modulated by 

nearby vacancies, thus varying the potential barriers 

from site to site.  This situation not only requires 

considering numerous intermediate states between 

the initial and final locations of the atom, but also an 

effective optimization technique to find the minimal 

energy path (MEP) associated with the transition[10]. 

Techniques such as the nudged elastic band (NEB) 

or the zero temperature string (ZTS) are available in 

some DFT[11] and molecular dynamics (MD)[12] 

packages. An extreme but very important case of 

materials with defects is related to highly disordered 

systems – amorphous states, random alloys, non-

stochiometric compounds, etc. These materials have 

been a topic of great interest in microelectronics, e.g. 

non-stochiometric metal oxides are being evaluated 

in ReRAM device studies[13]. Many of these 

materials are comprised of random local 

arrangements of atoms and are not 

thermodynamically stable, requiring the use of 

stochastic methods to calculate their properties and 

to generate representative samples for simulation [14]. 

An area of great recent activity in MM involves 

low dimension systems such as free solid surfaces, 

thin films, material interfaces[15,16,17], motivated by 

continued scaling which has confounded bulk and 

interface effects within devices and also by the wafer 

level chemistry which occurs within the first few 

atomic layers of the surface. Addressing the 

problems of interest in these systems goes beyond 

determining static properties of materials and 

structures; it requires modeling dynamic processes 

such as the effect of deposition rate on the crystal 

structure of the film and how active molecules in a 

plasma interact with the silicon surface, etc. It also 

adds complexity because less can safely be assumed 

about the system without unphysically biasing the 

solution. Although it has limitations, the MD method 

has been indispensable tool for modeling these low 

dimensional systems as discussed in the following 

section. Many DFT packages are capable of 

simulating systems with the ab initio MD[18] 

algorithm; however, computational resources and the 

turn-around-time to complete simulations are far 

from what technology engineers would like to see 

for evaluation of multiple options or optimization of 

processes. 

The final MM application area we will cover is 

simulation of nanostructures such as nanowires, 
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nanosheets[19,20]. With the reduction of the system 

size, the “golden age” of being able to use MM only 

for the extraction of material parameters while doing 

the brunt of the calculation with more efficient 

“continuous models” which use those parameters, is 

waning. The MM methodology is now often applied 

to the entire structure and used to directly calculate 

macroscopic characteristics such as the current-

voltage relations with methods like the non-

equilibrium Green’s function (NEGF)[21] or the time 

dependent DFT[22].  This along with advancements to 

the fundamental theory which has been used for 

computation of ideal crystalline material properties 

for decades, profound progress in the development 

of numerical methods, software implementation, and 

high performance computing has advanced MM 

capabilities to the point of making them practical for 

semiconductor technology development. 

3. Metals Intermixing 

Metals are a key material in manufacturing high 

density interconnects (IC) for very large scale 

integration (VLSI) circuits. The design of an 

effective IC system is guided by many factors, 

among them continued scale reduction, low line 

resistance, minimal crosstalk, and acceptable long 

term reliability, e.g. mitigation of electromigration 

effects [23]. This multidimensional optimization 

results in IC systems composed of different metals 

and necessarily assumes contacts between them. It is 

a well-known effect that certain metals used in 

combination are susceptible to mixing caused by the 

process of interdiffusion[24].  This process can be 

intensified with pressure, applied electrical potential, 

and elevated temperature[25,26]. For some applications, 

metal interdiffusion is a desirable effect, harnessed 

to form a mechanically strong joint; however, for the 

majority of IC processing, this is not the goal.  

Metals with heterogenous crystal structures and 

foreign atoms usually increase the resistance of the 

contacts [17].  The mixing issue is a problem because 

many IC recipes require depositing thin barrier metal 

liner first, before the main IC metal. This liner serves 

as a diffusion barrier for the main contact metal, 

specifically to prevent its penetration into the inter-

layer dielectric (ILD).[27]  Mixing between the 

contact and liner metal would not only destroy this 

barrier but also increase electrons scattering from the 

interface, increasing overall line resistance. This is a 

complex system to simulate which we will discuss in 

subsequent sections. 

3.1. Thermodynamic Considerations 

Metals will intermix only if it’s energetically 

preferable. For many two-metal combinations, one 

can usually find in metallurgical textbooks or online 

databases, an equilibrium phase diagram[28,29] and a 

graph of mixing enthalpy dependence versus alloy 

composition to see if the metals in question form an 

equilibrium binary alloy and thus mix.  

Complications begin when the metals or their 

composition is not a popular entity and thus the data 

is absent.  In this case, the mixing enthalpy needs to 

be calculated.  There are two widely used ways to 

compute the equilibrium state energy of a solid. The 

first relies on the classical molecular dynamics (MD) 

method[30]. This method requires a trustworthy 

interatomic potential, also called a force field (FF), 

which may not be available for the materials of 

interest. Fortunately there is a universal FF that 

works well for metals known as EAM[31], but it 

requires parameters for the specific metals.  If these 

aren’t available, a standard method for computing 

these consists of generating a representative set of 

targets for fitting, a validation suite for testing the 

result, and a method for optimizing, available from 

several optimization libraries[32]. The process of 

optimization itself can involve many stages, such as 

adding more and more targets to narrow down the set 

of potential parameters. The targets usually include 

both experimental data such as material density, 

elastic moduli, formation energy, etc, and data 

generated with a more rigorous computational 

method e.g. DFT[5]. Since most of the targets have 

error bars, the optimization can be quite complex. 

It’s worth noting that because of its rigor, the DFT 

method could be used to calculate the material 

properties of interest directly; however, DFT doesn’t 

always reproduce experimental results, even for bulk 

quantities such as bandgap.  Because of this, using 

an efficient FF with its additional fitting parameters 

often allows more faithful matches to experiment. 

This fitting process is also applicable to other 

systems, for instances those with more than two 

metals or containing defects.  Once the mixing 

enthalpy has been calculated, its sign suggests 

whether it’s thermodynamically preferable for two 

metals to mix at equilibrium conditions or exist as 

separate phases.  The result, however, doesn’t 

indicate how long it would take for the materials to 

mix; that is where the process kinetics simulation 

comes into play which is the subject of the next 

section.  



Voinov et al.: Material Modeling in Semiconductor Process Applications 

  J. Microelectron. Manuf. 3, 20030406 (2020) 5  

3.2. Kinetic Considerations 

To evaluate the time scale of intermixing and its 

dependence on the initial state of the structure and 

process conditions, a kinetic model of the system 

must be developed. For this endeavor, one might be 

tempted to employ the same MD approach used to 

calculate the energy of the system as described 

above. However, directly integrating equations of 

motion for all atoms in the solid results in issue with 

the time scales involved. To resolve thermal 

vibrations of atoms, i.e. phonons, one needs to limit 

the time step at least by the inverse of the typical 

phonon frequency, which in practical simulations of 

solids appears to be ~10-2 ps. However, diffusion of 

atoms in solids is inherently a slow process; 

observable concentration changes occurs at a time 

scale closer to ~10-3 sec [33]. The result is that the MD 

approach becomes computationally prohibitive for 

modeling solid state diffusion. Another significant 

caveat is that the FF used in MD simulation would 

need to be specially fit to reproduce states with 

atoms far from their equilibrium positions in the 

crystal lattice, to capture hopping between sites, and 

not just for the equilibrium properties discussed in 

Section 3.1. To overcome these issues, the kinetic 

Monte Carlo (KMC) method[34] can be applied.  In 

this method, a restricted set of physical events is 

selected and the appropriate rates are calculated for 

each of event. A Monte Carlo method is then used to 

sample events and advance the state of the system. In 

the simplest version of this method, lattice KMC 

(KLMC), atoms can take only fixed positions in the 

ideal crystal lattice. An open source implementation 

of the KLMC is available called SPPARKS[35]. To 

simulate interdiffusion, we use a customized version 

implemented with a model known as the binary alloy 

with vacancies (ABV)[36] model. In this model, a 

lattice site can be occupied by either atom of type A 

or B or remain vacant. A simple Hamiltonian, 

limited to only nearest neighbor interactions, is 

expressed as a sum of bond energies and depends on 

six parameters whose values can be fitted to pure 

metal formation energies, the energy of insertion a 

foreign atom or the mixing enthalpy, and the energy 

of vacancy formation. While rather simple, the 

model allows important observations about the 

behavior of the system. First, the possibility of 

mixing is directly related to the sign of AB bond 

energy; positive values prevent mixing. For 

interdiffusion to proceed, a sufficient concentration 

of vacancies must be assigned to the initial state, but 

not so that high that vacancies can coalesce and form 

voids. Fortunately, the final configuration is 

insensitive to the initial distribution of vacancies due 

to their high mobility. Typically the average time 

step is ~10-12-10-13 sec unless the Metropolis MC 

algorithm[37] is selected, which effectively minimizes 

the system energy to reach the final configuration. 

These simulations don’t require significant 

computational resources, e.g. a system of ~105 atoms 

simulating with SPPARKS using 4-8 parallel 

processes takes <20 min to reach the final state after 

~108 diffusion events. Some examples of simulation 

results are shown in Figure 2 for the case of good 

mixing of Al and Cu. The pictures have been created 

using OVITO[38] which is a very useful tool for 

visualizing atomistic simulation results. 

The KLMC method offers some insights into 

the kinetics of the intermixing although the 

experimental data[24] suggest that it’s a much more 

complex process. Specifically, the main assumption 

in the KLMC model that atoms hop between sites in 

a rigid lattice is questionable. During processing, the 

lattice distorts and many intermediate phases of alloy 

are formed along the interface. Also, for technology 

applications, it’s sometimes of interest to evaluate 

metals with different lattice types and imperfect 

crystal barrier layers, i.e. those with a grain structure. 

To address these problems, the off-lattice KMC 

model[39] has gained attention. KMC differs from 

KLMC in that it tracks the evolution of the system 

energy landscape, allowing atoms to occupy any 

local energy and hop through saddle-points between 

them. The locations of the minima and 

corresponding transition barriers are calculated on-

the-fly using a suitable FF after every diffusion event, 

which makes the method extremely numerically 

expensive; identical systems take ~103 times longer 

to simulate with KMC versus KLMC, limiting its use 
[40].  The art of creating a practical KMC code is all 

about handling fast diffusion events[41], making full 

use of parallel computing[42], and avoiding barriers 

recalculation wherever possible[43].  As we have 

found at Intel, the pay-off of KMC is the quantitative 

agreement with experiment for interdiffusion 

coefficients and activation energies and the 

qualitative impact of lattice type, orientation, and 

grain boundaries.  An example of its application is 

illustrated in Figure 3, which shows a FCC Cu - FCC 

Al bilayer separated with 25A of BCC Ta following 
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Figure 2. Initial (top 3 panels) and final (bottom 3 panels) states for Al (blue), Cu (yellow), and vacancies (red) 

shown left to right respectively. The final states after using KLMC to simulate 108 diffusion events in ~10μs. 

Periodic boundary conditions are set in all directions to avoid a free surface. An Cu-Al alloy forms along the 

interface separating initially pure metals while vacancies, which are distributed uniformly at the beginning of 

simulation, move into the Al region. 

 

 

5 μs anneal at 700K. A bridge of Cu and Al atoms 

formed along the grain boundary through the barrier 

layer can be clearly seen after 4 days of modeling 

using 16 parallel processes. It’s also evident that the 

perfect crystalline Ta is all but immiscible with both 

Cu and Al. 

It should be noted that the MD method, despite 

its limitations, is being used for these type of 

simulations [25,26].  While certain assumptions help 

make these simulations more applicable, a pure 

metal EAM FF is not sufficient for interdiffusion 

simulations. The FF must include cross-type 

interactions of metal atoms[44] or hybridization as 

available in MD codes such as LAMMPS[12]. 

 

Figure 3. The bridge of Al (white) and Cu (yellow) atoms 

growing through Ta (hidden) separation layer along the 

grain boundary. 
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Figure 4. a) Analytically generated polycrystalline FCC Cu grain structures for different sigma grain 
boundaries. b) calculated resistivity for specific grain boundaries. c) comparison of TB and DFTB resistivity 
for different grain boundaries relative to DFT. 

 

4. Metal Deposition for Electronic 
Property Calculations 

The line resistance of Cu interconnects is shown 
to be determined by the dimensions, texture and 
interfaces of the metal. In this section we describe 
the methodology used to accurately represent the Cu 
microstructure in planar and trench geometries for 
use as metal interconnects in integrated circuits.  
Atomistic representations may be created 
analytically for bulk and planar polycrystalline 
configurations, followed by an energy minimization 
step using LAMMPS[12]. Figure 4(a) shows the 
generated polycrystalline representation of different 
grain orientations and boundary interfaces for the 
most stable Cu textures, generated by rotating 
perfect crystals to give a single grain boundary.  
Resistivity of the structures was calculated from 
using the Nonequilibrium Greens Functions 
framework [45]. Figure 4(b) shows the resistivities 
calculated using DFT simulations and compared to 
experimental and external reports[46].  The 
computationally faster method of Density Functional 
Tight Binding (DFTB) [47] was shown to give similar 
resistances as DFT simulations (see Figure 4(c)) and 
can be used for larger multi-grain structures with 
mixed grain boundary types. It is more accurate than 
using Tight Binding (TB) with parameters from 
Papaconstantopoulos [48]. 

Using larger analytic polycrystalline structure, 
over 150 configurations with roughly uniform grain 

sizes averaging from 2-6nm in size for 3 different 
lengths ranging from 7-13nm long (see Figure 5(a)) 
were used to calculate transmission.  From these 
length dependent resistance plots shown in Figure 
5(b), the resistivity as a function of grain size was 
extracted, showing smaller grains lead to higher 
resistivity due to increased scattering at grain 
boundaries. Assuming grain sizes proportional to 
line widths, the resistivity of interconnects including 
the components extracted for GB & surface 
scattering can be plotted as shown in Figure 5(c) 
showing the expected rapid increase below 5nm. 

While analytic methods can be used to arrange 
a small amount of grains, MD can be used to 
simulate the deposition process, enabling the 
generation of truly realistic microstructures for 
material property calculations. Figure 6 shows the 
deposited microstructure results from MD 
simulations of Cu deposition on Ta substrates using 
the methodology described by Zhou and Francis[49, 50] 
with EAM potentials tuned for binary metal systems.  
Due to timestep limitations of the MD method, the 
deposition was simulated at an extremely 
exaggerated deposition rate (1 adatom/30fsec) at a 
temperature of 400K in order to get a sufficient 
thickness of 50 monolayers in the usec timeframe 
available.  Even with the elevated conditions, the 

resulting (111) FCC grains with 30 rotation were in 
agreement with experimental reported 
microstructures[51].
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Figure 5. a) examples of analytic polycrystalline Cu structures with perfect leads used as input to DFTB 
transmission calculations; b) resistance curves for different lengths and average grain sizes; c) extracted 
resistivity curves for phonon, GB scattering and surface scattering components.  Circular points are the values 
extracted from realistic MD deposition samples on the same plot. 
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Figure 6. Cu atoms deposited on a planar Ta substrate a) side-view showing the Ta substrate layers with 
deposited Cu atoms; b) top-down view of a slice through the substrate and Cu deposited layer showing the 
microstructural grains, boundaries, and stacking faults. 

 
 

Multiple instances of these microstructures 
were then used as input to DFTB transmission 
calculations to extract the resistivity for grain sizes. 
Extractions from slices of the realistic planar and 
trench MD deposition simulations are shown in the 
datapoints on Figure 5(c), giving good agreement 
with the analytic extracted curves. It confirms that 
the analytically generated GB structures are 
equivalent to the more costly full MD deposited 
polycrystalline ones, validating the methodology. 
This shows the power of using a combination of 
atomistic material modeling tools to generate and 

analyze microstructural dependence of material 
properties. 

5. Conclusion 

In this paper we briefly reviewed the state-of-
the-art of MM in the context of semiconductor 
TCAD.  We showed applications of MM approaches 
to problems of interest such the interaction of metals 
at an interface and the effect of metal grain structure 
on resistance. Before concluding, we would like 
address two vital aspects of MM. The first is
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Figure 7. Schematic view of material modeling software infrastructure. Downward (blue) arrows show input 

data flow direction, upward (yellow) arrows show simulation results flow direction. 

 

accuracy. With enough effort, i.e., careful model 

selection, extensive calibration, vigilance in assuring 

convergence, MM can often achieve accuracy 

comparable to experiment.  However, this level of 

effort is not always practical in an industrial setting, 

nor is it necessary.  MM can still be a viable tool for 

assessing competing technology options provided the 

simulated trends are physically defensible and 

consistent with available data for similar systems, 

even when the absolute value of the results have 

large error bars.  

The second aspect we wish to address is the 

framework for the ideal MM simulation 

environment[52]. It starts with having a tool which 

can create the atomistic structures of the systems we 

wish to model, as shown in Figure 7. This tool must 

be able to generate ideal as well as realistic 

structures, i.e. those with defects and multiple 

materials. Next we add reliable, highly scalable 

atomistic simulation code[s] to model the complete 

system, such as MD, KMC, or DFT and an option to 

seamlessly exchange atomistic structures between 

them.  Next we would include tools for interatomic 

potential fitting and verification, and computational 

utilities for managing massively parallel jobs. To 

analyze the results, an extended set of postprocessing 

and visualization options would ideally be 

encapsulated into a single tool.  And finally, the 

entire system should be connected by a flexible 

scripting framework, enabling construction of 

complex simulation flows.  With such a system, a 

monolithic MM system could be used to simulate the 

majority of problems of interest versus employing 

individual customized flows for each application, 

which is the most common approach today. 

In closing, we wish to recommend a recently 

published handbook[53] for further reading. 
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Fast and Accurate Machine Learning Inverse Lithography Using 

Physics Based Feature Maps and Specially Designed DCNN 
 

Xuelong Shi, Yan Yan, Tao Zhou, Xueru Yu, Chen Li, Shoumian Chen, Yuhang Zhao*  

Shanghai IC Research and Development Center, Shanghai, China 201206 

Abstract: Inverse lithography technology (ILT) is intended to achieve optimal mask design to 

print a lithography target for a given lithography process. Full chip implementation of rigorous 

inverse lithography remains a challenging task because of enormous computational resource 

requirements and long computational time. To achieve full chip ILT solution, attempts have been 

made by using machine learning techniques based on deep convolution neural network (DCNN). 

The reported input for such DCNN is the rasterized images of the lithography target; such pure 

geometrical input requires DCNN to possess considerable number of layers to learn the optical 

properties of the mask, the nonlinear imaging process, and the rigorous ILT algorithm as well. To 

alleviate the difficulties, we have proposed the physics based optimal feature vector design for 

machine learning ILT in our early report. Although physics based feature vector followed by feed-

forward neural network can provide the solution to machine learning ILT, the feature vector is 

long and it can consume considerable amount of memory resource in practical implementation. To 

improve the resource efficiency, we proposed a hybrid approach in this study by combining first 

few physics based feature maps with a specially designed DCNN structure to learn the rigorous 

ILT algorithm. Our results show that this approach can make machine learning ILT easy, fast and 

more accurate. 

Keywords: Optimal feature maps, inverse lithography technology (ILT), deep convolution neural 

network (DCNN). 
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1. Introduction 

Semiconductor industry has been progressed 

continuously from node to node to meet the ever 

increasing demand on chip performance 

improvement, power consumption reduction and cost 

reduction. The technology advancement has been 

enabled by various innovations in relevant fields, 

including new lithography exposure tools, new 

materials, new device architectures and new process 

technologies. The enormous challenges in the 

building of EUV lithography infrastructure has not 

slowed down the industry in the past, instead, the 

gap left by the difference in hardware resolution 

capability between immersion exposure tools and 

EUV exposure tools had created opportunities for the 

development and adoption of computational 

lithography technologies. We have witnessed the 

adoption of sub-resolution assist features (SRAF), 

multiple patterning technologies (MPT), and the 

source-mask co-optimization (SMO). The 

computational lithography technologies mentioned 

above have become the standard practice in 

developing integrated lithography patterning 

solutions for advanced semiconductor technology 

nodes. Source-mask co-optimization realizes the 

optimal lithography process for a selected set of 

patterns derived from a given set of pattern design 

rules. With the illumination source obtained from 

SMO, the lithograph process window of a chip for a 

design layer depends mainly on the quality of optical 

proximity correction (OPC) solution, which relies on 

the placement quality of SRAFs to a very large 

extent. The placement of SRAFs has gone through 

several evolutions, from simple rule based placement 

to model derived template placement, to inverse 

lithography technology (ILT) produced placement in 

hotspots fixing loop. In theory, inverse lithography 

has provided solid mathematical framework for 

achieving optimal mask solution. Although rigorous 

inverse lithography algorithms do exist in various 

forms [1, 2], full chip rigorous inverse lithography 

solution remains a challenging task in practice.  

Realization of full chip inverse lithography is not an 

academic interest only; it has enormous practical 

significance for advanced lithography process for 

tight pattern edge placement error control, in 

particular, for EUV lithography process for which 

stochastic effect induced edge placement error is 

significant. The effective way to reduce EUV 

https://doi.org/10.33079/jomm.20030407
mailto:yhzhao@icrd.com.cn
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lithography process stochastic effect is to improve 

image contrast through optimal assist feature 

placement. 

The research and development in ILT has 

achieved fruitful progress in two directions recently. 

In one direction, a breakthrough has been reported in 

full chip rigorous mask 3D simulations through 

intelligent and efficient algorithm that gains 

computational acceleration from arrays of GPUs [3, 4]. 

In another direction, machine learning ILT based on 

deep convolution neural network (DCNN) has also 

been explored with success [5, 6]. Machine learning 

ILT is not aimed at replacing rigorous ILT entirely, 

instead, machine learning ILT is intended to offer 

sufficiently good initial ILT solution for rigorous ILT 

engine to take over to reach convergence with 

extremely fast computational speed.  In essence, 

machine learning ILT solution can be viewed as 

constructing a nonlinear mapping function between 

the lithography target design and the rigorous ILT 

solution. It is not a simple point-to-point mapping; it 

is a function-to-point mapping. Machine learning 

ILT is made up of three major parts: (1) feature 

vector design; (2) neural network design, (3) 

machine learning ILT model training strategy. Feed-

forward multilayer neural network architecture has 

been proven to possess the capability of constructing 

function-to-point mapping [7,8]; while convolution 

network has the capability of exploring spatial 

correlation hierarchically and extracting feature 

vector representation automatically through training. 

In semiconductor industry, DCNN has been applied 

to hot spot detection as a classification problem [9-12] 

to ILT solution as a regression problem [5, 6]. However, 

previous implementation of DCNN for ILT uses 

rasterized lithography target design as input, with 

such pure geometrical image as input, the feature 

vectors extracted from DCNN lack of intuitive 

physical interpretation, they cannot address the 

critical questions regarding feature vector design, i.e., 

the feature vector resolution, the feature vector 

sufficiency, and the feature vector efficiency. The 

optimality of the feature vector extracted from such 

DCNN implementation is much more sensitive to the 

training samples selected.   

In our previous reports, we have presented our 

machine learning OPC and machine learning ILT 

results based on physically derived feature vector 

design followed by a shallow (5 to 6 layers) feed-

forward neural network [13, 14]. For machine learning 

ILT with our proposed physically derived feature 

vector design, the feature vector length needs to be 

around 140 to achieve satisfactory model accuracy, 

which will demand considerable memory resource in 

practical implementation. To lift the memory 

resource burden while still taking advantage of 

physics based feature vector design, we propose a 

hybrid approach in this study, which uses first few 

physics based feature maps as input, followed by a 

specially designed DCNN. The specially designed 

DCNN possesses the desired properties of being 

wide receptive field and of being able to preserve 

high resolution. It turns out that this hybrid approach 

can make machine learning ILT easy, fast and more 

accurate. 

2. Feature Vector Design for Machine 

Learning ILT 

Machine learning based ILT can be generally 

stated as: For a given ADI target layer and a fixed 

optimal mask generation mechanism (illumination 

source + mask type + rigorous ILT algorithm), there 

should exist a unique mapping function between ADI 

target data and ILT data, as shown in Figure 1. 

 

 

 
Figure 1. Mapping from ADI target to ILT image. 

 

Mathematically, it can be expressed as: 

ILT function (x, y) = F (ADI target patterns (x, y)) 

     (1) 

As we emphasized earlier, it is not a point-to-

point mapping, it is a function-to-point mapping. The 

value of ILT solution at point (x, y) not only depends 

on the value of ADI target data at point (x, y), but 

also depends on all values of ADI target data around 

the point (x, y) within an influence range. Before we 

proceed to address the question of how to design 

feature vector to describe the neighboring 

environment around a point (x, y), we should first 

ask the question: how many degrees of freedom does 

the neighboring environment around a point (x, y) 

have? The theoretical answer is: the degree of 

freedom of the neighboring environment around a 

point (x, y) is infinite. Therefore, a complete 
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description of the neighboring environment around a 

point (x, y) is impossible. Fortunately, a description 

with infinite resolution is often not required 

practically. This is true for machine learning based 

computational lithography, because the imaging 

system used in lithography process does not possess 

infinite resolution. This fact suggests that the number 

of effective degree of freedom of the neighboring 

environment around any point (x, y) can be 

considered finite practically. This observation and 

fact is the very foundation of all computational 

lithography. The second question we need to address 

is: what is a feature vector and what desired 

properties a feature vector should have? Essentially, 

a feature vector is a mathematical representation that 

describes the neighboring environment around a 

point (x, y) in a quantitative way. As a measurement 

device, a feature vector must address the following 

important properties, i.e., the measurement 

resolution, the measurement sufficiency 

(completeness), and the measurement efficiency. In 

addition, it is very desirable for a feature vector to 

possess a property such that the mapping function 

from input to output of the neural network model is 

less nonlinear and smooth (differentiable), or even 

monotonic (hopefully). 

 

 
Figure 2. Divide the neighboring environment into cells. 

To elucidate the concept of measurement 

resolution and measurement efficiency of a feature 

vector, we can look at Figure 2. To describe the 

neighboring environment around a point (x, y), we 

can divide the influencing area into small cells. 

Assume the influencing range is 1.0 m each side, 

and the cell size is x nm, then the cell size x 

determines the resolution of the feature vector 

representation, and the total number of cells = 

(21000/x)2 represents the maximum length of the 

feature vector for a complete description with 

resolution x nm. Clearly, the smaller the cell size x, 

the higher the measurement resolution; and the 

higher the resolution of the feature vector 

representation, the longer the feature vector is. To 

serve the machine learning based ILT properly, the 

resolution of the feature vector representation must 

meet a minimum requirement, which is determined 

by lithography process imaging condition, i.e., cell 

size x = k/(NA(1+max)). The k coefficient is 

related to the degree of spatial coherence of the 

illumination, which depends on the effective 

illumination area of the source. A typical cell size for 

high NA immersion lithography process is around 

15nm to 20nm, therefore, the estimated feature 

vector length for a complete description is 

(2000/20)2 = 10000. Of course, such a simple and 

plain encoding scheme for neighboring environment 

lacks of efficiency, because the encoding scheme 

does not explore the characteristics of the 

lithography process, it treats all cells equally and 

independently, it does not explore all symmetry 

properties among all the cells. Intuitively, not every 

cell has the same influence on the point of interest, 

on average, the closer the cell to the point of interest, 

the more important the cell is. As to the sufficiency of 

a feature vector, it is related to the capability of the 

feature vector in describing the neighboring 

environment completely within allowed error bound. 

Simply stated, for any two feature vectors X1, X2, if 

X1= X2, then, the condition |F (X1) - F (X2)|   ( is 

the allowed error bound related to data noise) 

CANNOT be violated.  

There have been several reported ways of 

designing feature vectors for computational 

lithography. Incremental concentric square sampling 
[15], incremental concentric circle area sampling [16], 

polar Fourier transform [17] have all been proposed to 

be used for constructing feature vectors for 

computational lithography. These feature vector 

designs do not address the optimality of the designed 

feature vector, and most of them are pure 

geometrical based feature vectors, except the design 

based on polar Fourier transform. Feature vectors 

based on “geometrical rulers” have intrinsic 

deficiency in machine learning computational 

lithography; this is particularly true for inverse 

lithography which grows assist features out of blank 

areas in mask space. As it is known, rule based assist 

feature insertion based on geometrical measurement 

has abrupt change points in the rule table. Therefore, 

machine learning inverse lithography using 

“geometrical ruler” based feature vector as neural 

network input must possess more complicated 

network structure to learn those abrupt change points 

in order to map the feature vector into correct 
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response function domain. Feature vectors derived 

from polar Fourier transform made progress by 

exploring the characteristics of the lithography 

process partially, however, it still fails to fully take 

the imaging process physics into account. Feature 

vector design is essentially an information encoding 

scheme design. For machine learning computational 

lithography, there are three spaces we can use for 

information encoding, the lithography target space, 

which is pure geometrical; the mask space, which 

has geometrical information and optical property 

information; the image space, which contains 

information about design geometries, mask optical 

properties and imaging formation characteristics. 

From an information point of view, information in 

lithography target space is not complete (without 

specifying optical properties of the background and 

the pattern covered areas), if feature vector design is 

in lithography target space, then the subsequent 

DCNN must learn mask optical properties, nonlinear 

imaging formation process and rigorous ILT 

algorithm. Information in mask space is complete 

and of highest resolution. If feature vector design is 

in mask space, then the subsequent DCNN must 

learn nonlinear imaging formation process and 

rigorous ILT algorithm. Information in imaging 

space can be used to recover information in mask 

space fully within the resolution limit defined by 

optical imaging condition. If feature vector design is 

in image space, then the subsequent DCNN only 

need to learn the rigorous ILT algorithm. Between 

mask space and image space, which space is 

narrower in terms of encoding efficiency? In mask 

space, the “function space” is constrained by design 

rules of the layer; while in image space, the 

“function space” is constrained by both design rules 

and imaging conditions. Stated explicitly, all aerial 

images derived from a given imaging condition 

constitute a special class of functions. In other words, 

the “function space” in image space is narrower than 

the “function space” in mask space, and the 

information lost in image space in comparison with 

that in mask space is beyond the optical imaging 

resolution. Therefore, optimal feature vector design 

for computational lithography should be related to 

optimal and efficient representation of aerial images 

of the class at hand.  

Now the question becomes how to represent 

aerial images most efficiently? The aerial image 

function I(x,y) is a band-limited function. While a 

real function with finite bandwidth  can always be 

represented by a set of basis functions of the same 

bandwidth, there still exists the question whether 

there is an optimum set of basis functions among all 

the possible sets of basis functions with bandwidth, 

. By the optimum set of basis functions, it means 

that only the minimum number of the basis functions 

that are needed to approximate any real valued 

function of bandwidth, , for a specified error 

requirement. To seek the optimal representation of 

aerial image function, we can refer to the imaging 

equation of Hopkin’s, which can be decomposed into 

a sum of coherent imaging system for partially 

coherent illumination, as shown in Equation (2) 

below. 

2

1

( , ) i i

i

I x y M


=

=                  (2) 

Where  represents the convolution operation 

between the ith kernel and the mask transmission 

function M. {i} and {i} are the set of 

eigenfunctions and eigenvalues of the transmission 

cross coefficients matrix (TCCs). This optimal 

imaging system decomposition is originally designed 

for fast aerial image calculation under partial 

coherent illumination, and it has been proved that 

this decomposition scheme is the optimal 

decomposition in terms of computational efficiency 

[18]. From an information theory point of view, we 

can interpret it as an optimal and most efficient aerial 

image information encoding scheme. This suggests 

that imaging system kernels {i} captures imaging 

system characteristics fully, and they are a set of 

natural and optimal “optical rulers” for measuring or 

estimating the neighboring environment around a 

point (x, y), because the set of {i} eigenfunctions 

are orthonormal functions. Based on the above 

reasoning, we define {S1, S2, … , SN} as the feature 

vector, with Si being defined as: 

2

iS
i

M=                       (3) 

Then, the machine learning inverse lithography 

problem can be reformulated from Equation (1) to 

Equation (4). 

ILT function(x, y) = F (S1 (x, y), S2 (x, y),…SN (x, y)) 

(4) 

The idea of using imaging eigen signal set {Si} to 

describe aerial image has been used previously for 

OPC model and lithography two-dimensional 

patterns’ quantification [19, 20]. Now we turn to the 

question of how to obtain the approximate function 

F, this is related to neural network design. 
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Figure 3. Feed-forward neural network model. 

 

 

Figure 4. Hybrid approach machine learning inverse lithography model. 

 

3. Machine Learning Based ILT and 

Results 

With feature vectors calculated using Equation 

(3), a general mapping function described by 

Equation (4) can be constructed using a feed-forward 

neural network structure, as suggested by the 

universal approximation theorem 7, 8. The results 

based on this approach have been reported in our 

previous report 14. Figure 3 shows the key elements 

of the approach. 

Since both the input feature vector maps and the 

output (continuous tone mask) are band-limited 

functions, they are smooth and differential functions. 

This property makes the mapping function 

construction easier using feed-forward neural 

networks.  However, we found that the required 

feature vector is still considerably long in size (140 

elements in our study) in order to achieve good 

model. This will impose considerable requirement on 

memory resource in practical applications. To ease 

the memory resource requirement while keeping 

physics based feature vector as input, we have taken 

a hybrid approach in this study. In this hybrid 

approach, we used {S1, S2, S3, S4, S5} five feature 

maps as input into a specially designed deep 

convolution neural network (DCNN). The basic idea 

is to use first few physics based feature maps, which 

are supposed to be able to provide sufficient 

information to represent mask optical properties and 

imaging process characteristics, then the subsequent 

DCNN to develop more deeper and efficient 

representation for ILT modeling and to accomplish 

coordinated regression. This is because both input 

feature maps and the output image (continuous tone 

mask) have certain degree of spatial correlation, i.e., 

neighboring pixels are correlated. To serve machine 

learning inverse lithography purpose, the specially 

designed DCNN structure should possess certain 

desired properties: (1). The wider the receptive field, 

the better, in order to explore the spatial information 

around a point (x, y); (2). The original resolution of 

the image should be preserved; (3). The depth of the 

DCNN should be moderate, so that there will be no 

need to have residual connections in the network 

structure for easy training. Following these design 

guidelines, we replace all pooling layers with bath 

normalization layers, and we use ReLU as the 

activation function. The convolution kernels are all 

3x3 in size, and the stride step size is 1. The design 

of our hybrid approach is shown in Figure 4. 

The training of the neural network model needs 

to include training samples and test samples, and 

they are selected from the periphery areas of a 28nm 

SRAM design via layer. The pattern selection 

strategy is the same as that for OPC model 

calibration and SMO. Total number of images for 

training is 134, and total number of images for 

model test is 48.  We have tried both He 

initialization and orthogonal initialization for 

weights in model training, and we found there is no 

essential difference in terms of the model quality 
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Rigorous ILT vs. ML model                                     Rigorous ILT vs. ML model 

                

Figure 5. Images from rigorous ILT solutions and from machine learning model for training set, model input: 

{S1:S5}. 

 

Rigorous ILT vs. ML model                                 Rigorous ILT vs. ML model 

                

Figure 6. Images from rigorous ILT solutions and from machine learning model for test set, model input: 

{S1:S5}. 

 

from these two different weight initialization 

schemes. The learning rate used is 5x10-5, and Adam 

optimizer is used in training.  

To assess the model quality, we first normalize 

the rigorous inverse lithography solution into [0, 1] 

using a common normalization factor, then we use 

two metrics to quantify the quality of a model. Let O 

denote the normalized rigorous inverse lithography 

solution image, and Ô the neural network model 

predicted image. Then the first metric we used is the 

probability P(|O  –Ô |  ) where  = 0.1 and 0.05, 

and the other metric used is RMSE. For comparison 

purpose, besides using {S1, S2, S3, S4, S5} as DCNN 

input, we also used {Aerial image} and {Aerial 

image + S1:S5} as DCNN input.  The model training 

error statistics and test error statistics are shown in 

Table 1 below. 

The visual comparison between images from 

rigorous ILT solutions and from our machine 

learning model for training set and test set are shown 

in Figure 5 and Figure 6. 

As it can be seen from Table 1, the first five 

feature vector maps (images) {S1:S5} are better 

model input design than aerial image alone. Aerial 

image is the weighted sum of many signals (images) 

from independent imaging formation kernels {i}, as 

expressed in Equation (2). The sum operation makes 

the original information collapse to a certain extent, 

the set of independent feature vector maps (images) 

{S1:S5} preserves the original information better. 
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Table 1. Model training error statistics and verification error statistics 

Model input Error spec. P(|O  –Ô |  ) RMSE (x10-4) 

  Training set Test set Training set Test set 

Aerial images P(|O  –Ô |  0.10) 0.987 0.976 3.5 4.4 

P(|O  –Ô |  0.05) 0.928 0.916 

{S1:S5} P(|O  –Ô |  0.10) 0.999 0.995 1.8 2.6 

P(|O  –Ô |  0.05) 0.989 0.968 

Aerial images 

+ {S1:S5} 
P(|O  –Ô |  0.10) 0.998 0.989 1.9 2.9 

P(|O  –Ô |  0.05) 0.987 0.965   

 

 

With the first five feature vector maps (images) 

{S1:S5} as DCNN input, P(|O – Ô |  0.05) can reach 

96.8%. This is better than the model performance 

using feed-forward neural network with long feature 

vector (feature vector length =140), the feed-forward 

neural network model can only achieve P(|O – Ô |  

0.1) = 99.0% and P(|O – Ô |  0.05) = 87.5%. The 

improved model accuracy of the hybrid approach 

proposed in this study may result from a 

combination of the physics based feature maps, 

which contain information about the image 

formation mechanism, and the power of DCNN, 

which possesses the great capability of further 

exploring spatial information from {S1:S5} and of 

constructing deeper representation most suitable for 

learning rigorous ILT mechanism. 

Besides the greatly improved model accuracy in 

comparison with the feed-forward model, the speed 

enhancement relative to rigorous ILT is also 

significant. With 4 CPUs (Intel Xeon E7-8855-V4, 

2.1 GHz, each CPU has 14 cores), it takes 12.1 

seconds on average for a 20mx20m patch. In 

comparison with rigorous algorithm (assume 100 

iterations for reaching convergence), the estimated 

speed gain factor is about 25 or more. By running the 

model on a single GPU (Nvidia telsa M60), 

additional speed enhancement by a factor of 20 can 

be achieved. 

4. Conclusion 

Inverse lithography technologies can 

theoretically provide the ultimate optimal mask 

solutions once the lithography process imaging 

condition is fixed. However, its full chip 

implementation has been in stagnation for a long 

time due to its lack of sufficient speed using rigorous 

algorithms.  A hybrid approach by combining 

machine learning inverse lithography technology 

with faster rigorous ILT algorithms has paved the 

way for its full chip implementation. Due to high 

accuracy requirement, machine learning inverse 

lithography is not intended to provide the final ILT 

solution entirely; rather, it provides a sufficiently 

good initial solution for a rigorous engine to take 

over and to achieve final converged solution with 

very few iterations. In our proposed machine 

learning inverse lithography method, we use 

information in image space directly instead of 

information in design geometrical space as model 

input to lift the burden for the model to learn very 

non-linear imaging physical process. We also 

employ a specially designed DCNN that can both 

develop more efficient representation for machine 

learning ILT from imaging space information and do 

coordinated regression.  The new innovative method 

has made machine learning ILT easy, fast and more 

accurate. 
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Abstract: The shrinking of the size of the advanced technological nodes brings up new challenges 

to the semiconductor manufacturing community. The optical proximity correction (OPC) is 

invented to reduce the errors of the lithographic process. The conventional OPC techniques rely on 

the empirical models and optimization methods of iterative type. Both the accuracy and computing 

speed of the existing OPC techniques need to be improved to fulfill the stringent requirement of 

the research and design for latest technological nodes. The emergence of machine learning 

technologies inspires novel OPC algorithms. More accurate forward simulation of the lithographic 

process and single turn optimization methods are enabled by the machine learning based OPC 

techniques. We discuss the latest progress made by the OPC community in the process simulation 

and optimization based on machine learning techniques. 
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1. Introduction 

Optical proximity correction (OPC) becomes 

critical for the process of current advanced 

technological nodes. The conventional methods of 

the optical proximity correction rely on the empirical 

rules or the combination of the parametric models 

and traditional optimization methods most likely in 

the iterative sense. The empirical rules highly depend 

on the experience of process engineers and works 

well for the early technological nodes with larger 

critical dimensions, but the model based methods are 

required for the sub 100nm technological nodes. 

Considering the difficulty of the rigorous 

mathematical simulation of the physical and 

chemical process involved in the optical lithographic 

process, simplified models with empirical 

parameters are usually applied in the actual OPC 

process[1, 2]. Even the contemporary numerical 

methods such as Finite Difference Time Domain 

(FDTD)[3–5] or Finite Element Method (FEM) et. al. 

are able to provide more accurate solutions to the 

optical imaging process, photo-chemical reactions 

and so on, the formidable cost of computation power 

hinders the application of such methods to larger 

scale systems such as full chip level optimization 

problems. The past efforts in deriving more accurate 

analytical or semi-numerical models for the forward 

simulations of relevant physical chemical 

processes[6,7] boost the development of more 

practical and efficient OPC technologies. Even the 

complexity of the photo-resist reactions slows down 

the progress of obtainment of more reliable resist 

model, and so does the etch model, the optical 

imaging problems can usually be well resolved after 

simplified assumptions are made to the optical 

imaging systems. The appearance of the 

computational tractable models makes the iterative 

optimization of the mask shapes possible which 

becomes the corner stone of the current OPC 

technologies. Combining with the latest setup of the 

optical lithography machines which enables the 

variable illumination conditions[8, 9], source-mask 

optimization (SMO)[10–12] also becomes an important 

part of the OPC workflow. Until the techniques of 

the insertion of sub-resolution assist features (SRAF) 

being added to the arsenal of OPC toolkit to enlarge 

the process window of the optimized mask patterns, 

the framework of contemporary OPC is settled down. 

However, the room of the improvement of current 

OPC workflow remains and the rise of data science 

as well as machine learning provides huge amount of 

opportunities for the computational lithography 

community. 

2. Optical Lithographic System 

The optical microlithography system mainly 

includes four parts: source, mask/reticle, exposure 

system and wafer. To avoid the inhomogeneity of 

https://doi.org/10.33079/jomm.20030408
mailto:xupeng2019@ime.ac.cn
mailto:weiyayi@ime.ac.cn
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Figure 1. Illustration of an optical lithographic projection system[13]. 

 

illumination on the photomask, Kohler’s method of 

illumination is applied. The source or the image of 

the source is placed at the focal plane of the 

condenser. The photomask/reticle is then illuminated 

by the parallel beam and the energy distribution on 

the top plane of the mask is then homogenous in the 

idealistic situation. Traditional mask is the binary 

intensity mask. They are formed by the chromium on 

glass. Different types of fused silicon are applied for 

varied illumination wavelengths. Phase shift masks 

are also introduced to improve the image quality. 

The image of the scattering sources on the 

photomask is formed on the wafer after the 

projection optics. The standing wave pattern is 

formed by the reflection from the photoresist/wafer 

interface. There are two types of photoresist: positive 

resist and negative resist. They response differently 

to the illumination. 

3. Machine Learning Based OPC 

The machine learning and data driven 

perspective may change the OPC workflow mainly 

in three aspects. Firstly, more accurate and fast 

models become accessible after the introduction of 

novel tools such as deep neural networks as a good 

universal approximator which should be beneficial 

even they are simply embedded into the traditional 

OPC framework; Secondly,  the expensive and time 

consuming iterative optimization process of 

prevailing OPC techniques may be replaced by the 

single run computation of well trained models which 

directly perform the optimization process including 

the mask optimization (MO), SMO, SRAF insertion 

and so on; Third, the whole workflow of the OPC 

may be modified by the data driven methodology 

and the changes may not be constrained within the 

scopes of feature pattern selection and hotspots 

detection. The novel full chip level solution may be 

enabled in the future. We shall discuss the recent 

progress of the machine learning based OPC 

technologies in the three directions mentioned above 

separately. 

3.1. Negative Tone Development 

The simulation of the lithography mainly 

contains three parts: Optical model, Resist model 

and Etch model. The first two process is coarsely 

shown in Figure 1. 

 

 
 

Figure 2. Lithography simulation[14]. 

 

The ideal situation of the forward simulation is 

the success of the ab initio calculation. For the 

optical imaging system, this target is more 

achievable. The realistic imaging system is usually 

simplified and mathematical abstraction can be done 

within the framework of optics[15]. In Figure 2, a 

typical optical configuration is shown. The aerial 
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Figure 3. ANN-based 3D resist model[21]. 

 

Figure 4. CNN architecture[14]. 

 

image is computed approximately with methods such 

as Hopkins method et.al. The chemistry involved in 

the resist model is complicated to compute from the 

first principle[16-18]. Sometimes, a simple threshold 

model is applied for the resist model and the 

threshold can be either constant or variable[19]. The 

etch model is more intractable due to the 

complicated physical- chemical process and multi-

factorial control parameters involved such as plasma 

nature, chamber configuration et.al. Historically, 

variable etch bias (VEB) model is applied for the 

optimization purpose[20]. However, the approaches 

mentioned above may not be able to meet the 

requirement of the OPC techniques developing for 

the advanced technological nodes and more accurate 

and rigorous models are necessary while the nodes 

shrink. The machine learning based resist model and 

etch model turn out to be effective and becomes 

good candidates for future OPC application.  

The general purpose of the ML based 

simulators is to obtain a general function 

approximator with the local geometric features as 

input and values of the height or threshold at the 

pixel level as the output. In principle, it can be done 

with the multilayer neural networks. 

Seongbo Shim et. al. applied the full connected 

neural network to fit the resist model with the points 

sampled from the geometry of layout as the input 

and the resist height at center of the window as the 

output. The configuration of their model is shown in 

Figure 3. Youngchang Kim et. al. use the similar 

method to realize the prediction of etch bias[20]. 

Since the inventions of new architectures of 

neural networks emerge, more efficient and suitable 

approaches are fetched by the OPC community to 

improve the performance of the forward simulators. 

Yuki Watanabe et. al. use convolutional neural 

networks which are widely applied in the computer 

vision computation to estimate the resist pattern 

instead[14]. The architecture of their net is shown in 

Figure 4. Since sometimes, the rigorous simulation 

or experimental data are hard to obtain especially for 

new technical nodes, to obtain the trained model 

with the required accuracy with fewer data, Yibo Lin 

et. al. take the advantage of the transfer learning and 

active learning while they are trying to solve the 

same problem[22]. Later, the generative adversarial 

net is also introduced by the same group for 

simulating purpose[23]. 
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3.2. Machine Learning Based Optimizers 

Early days, the mask optimization relies on the 

empirical rules which usually depend on the 

geometry of the layout patterns. The contours of the 

layout patterns are decomposed into the edges and 

corners and the positions of their end points are 

varied and optimized according to the rules 

subtracted from the experimental facts[24]. Even 

though computationally efficient, the rule based 

optimization methods are not able to provide the 

required accuracy and fail to fulfill the requests of 

the advanced technological nodes. A more robust 

iterative optimization method based on the optical 

models, photoresist models et. al. is introduced. The 

basic idea is to change the positions of the end points 

of the edges and corners mentioned above and the 

simulated images on the wafer are obtained 

accordingly. The full optimization cycle is stopped 

once the target patterns and the simulated images 

match each other. Different kinds of error functions 

are applied to provide a quantitative estimation of 

the deviations between the target patterns and the 

simulated images. The Edge Displacement Error 

(EDE)[25], Edge Placement Error (EPE)[26] or Pixel-

wise Error Summation[27] et. al. are usually 

calculated. The optimization process is usually 

computationally expensive due to the slow 

convergence of the iterations. While coarser models 

which are more computationally tractable are applied 

at the cost of the accuracy, the effort of the reduction 

of the iterations inspired the early application of 

machine learning techniques to the OPC regime and 

it remains as a main purpose of machine learning 

based OPC packages till nowadays.  

The earlier attempt to obtain a better initial 

guess for the mask optimization process with the 

linear regression methods done by the researchers at 

University of California, Berkeley becomes an 

excellent start point in this track[28]. Taking 

advantage of the large dataset of the modified mask 

patterns after OPC by the commercial EDA packages, 

the authors estimate the expected fragment 

movement by the simplest linear statistical model 

provided an input target layout pattern. It provides a 

prototype of the basic ideas of the machine learning 

based OPC technologies within the framework of the 

supervised learning method. The realization of the 

workflow still requires the involvement of the 

advanced commercial EDA packages to generate the 

labeled data (the correct fragment movement given a 

specific mask pattern as the original input). As a 

result, the upper bond of the accuracy of this type of 

method is constrained by the correctness of the 

simulators and the efficiencies of the optimizers of 

the relevant commercial software. And the 

performance of such method is further compromised 

by the oversimplification of the mapping from the 

original input mask pattern to the predicted fragment 

movements by the application of a linear model. 

However, the trained linear model serves as a coarse 

optimizer of the input mask pattern which provides 

the optimized mask pattern in a single run while it is 

fed by the input feature vectors representing the 

original mask patterns. The authors successfully 

reduce the number of iterations of the traditional 

OPC workflow by the replacement of the original 

mask pattern with the statistically learned one as the 

initial condition of the subsequent optimization flow. 

Another significant contribution of the authors is 

that they successfully introduce a representation 

method for the input mask layout which makes the 

further calculation they complete computationally 

feasible. The discrete cosine transform (DCT) is 

applied to the input mask layout, and first hundreds 

of the DCT coefficients is collected in the Zig-Zag 

order (Shown in Figure 5.) as the input feature 

vectors of the linear model to be trained. 

 

 

Figure 5. Zig–zag ordering of DCT coefficients[28]. 

 

The feature engineering accomplished this way 

serves as one of the mainstream techniques in the 

OPC community before more efficient and universal 

feature learning techniques fitting the requirement of 

the end to end learning such as the prevalent 

convolutional neural network (CNN) techniques are 

introduced from the deep learning community. The 

DCT is also applied by other researchers in the OPC 

community later in different ways including the 

variant form of the Fourier Transforms[29–32]. Even 

after the CNN et. al. deep learning techniques are 

introduced and the representation learning is realized 

automatically independent of the input data 
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Figure 6. The schematics of the NN for OPC [36]. 

 

formulations, DCT is sometimes still used as the pre-

processed data type as the neural network inputs[33].  

The trained models after the supervised learning 

as the optimizer instead of the traditional iterative 

optimization circle are further improved mainly in 

two aspects: more complicated and accurate model 

instead of the linear statistical model are used to 

approximate the mapping between the input mask 

pattern and the optimized mask pattern (the 

optimization can be in the form of either motions of 

the specific edge fragment or the modified mask 

patterns as a whole.); Different feature engineering 

can be done or the representation learning within the 

scope of the deep learning can be applied to the 

mask pattern and the dimensional reduction can be 

realized in varied ways accordingly[34].  

A direct improvement of the representation 

capability of the linear model has been done by 

Tetsuaki Matsunawa et. al.[35] by the application of 

the generalized linear mixed model instead to 

include the edge type effect. Considering the 

universal approximation property of the multilayer 

neural network, replacing the linear model with the 

typical multilayer neural network becomes another 

natural choice and has been done by Rui Luo[36]. The 

author considering the estimation of the binary value 

of the central pixel of the square modified mask 

pattern by the standard three layer neural network 

with the original pixel level binary mask pattern as 

the input instead of estimating the motion of the 

central fragment. To obtain the whole modified mask 

pattern, the author has to scan the three layer model 

over the original mask pattern. The schematics of the 

NN is shown in Figure 6. Such kind of scanning can 

be done naturally by the introduction of the 

convolutional neural networks and the three layer 

neural network above can actually be treated as the 

convolutional layer. 

The contemporary convolutional neural 

networks (CNN) with varied architectures have been 

invented and widely applied to different scenes such 

as image segmentation, object recognition, image 

classification et. al.[37]. Basically, it is critical that the 

actual input of the prevalent CNNs is usually the 

tensor type data instead of the flatten one used in the 

Rui’s work, and the convolution layer/Kernel layer 

with the shared weight parameters slides across the 

input tensor. The pooling layers are usually applied 

to further reduce the dimensions of the features 

learned. After the invention of the training methods 

of the deep neural networks such as the 

backpropagation et al.[38], the CNNs emerges. The 

critical advantage of the deep CNNs is that they 

permit the representation learned from the multiple 

levels of the abstraction which are realized by the 

stacking of varied convolutional kernels and pooling 

layers. It avoids the necessity of the designing effort 

of feature engineering by human wisdom and 

enables the end to end training of models which can 

be widely applied. The CNNs are immediately 

fetched by the OPC community and relevant works 

have been done recently. Once we constrain our 

discussion within the mask pattern optimization or 

source optimization problems, the representation of 

the image patterns by the latent vectors and their 

decoding are naturally involved and can be directly 

linked to the encoder-decoder structures. For 

example, the convolutional autoencoder is trained to 

do the Source Mask Optimization by Ying Chen et. 

al.[39] to dramatically raise the speed of the 
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Figure 7. Illustrations of (a) a layout clip, (b) a model-based source, and (c) an autoencoder-based source [39]. 

 

Figure 8. An overview of the CGAN functionality[42]. 

 

optimization process by a factor of 105. Their model 

output is shown in Figure 7. 

Similarly, the stacking convolutional 

architectures are also implemented by Haoyu Yang 

et al.[40] to form the generator and discriminator of 

the generative adversarial network (GAN)[41] when 

they succeed in realizing the mask optimization with 

the modified discriminator design. After the GAN 

converges, the generator can be used to calculate the 

optimized mask pattern of the original input one 

within 0.2s which is negligible compared with the 

traditional OPC methods. The convolutional 

autoencoders (CAE) are also applied in other 

regimes such as the insertion of the Sub Resolution 

Assist Features (SRAF) et. al.[42]. They can be trained 

as GAN shown in Figure 8. 

Basically transformed into a image generation 

or translation problem[43, 44], the graphic generation 

of the modified mask pattern can be done by the 

mainstream computer vision techniques. Proper 

modifications made to the design of the specific 

architectures are necessary. Autoencoders can serve 

as the models or function approximators of the 

mapping between the input mask pattern and 

optimized mask pattern. The training process or the 

learning of the relevant parameters are finished in 

the supervise learning mode. In fact, the trained 

models as the optimizers are not necessarily 

functioned as the generators of the optimized mask 

or source patterns. They can also be easily applied as 

the classifiers for other OPC purposes. We are trying 

to separate these applications into different 

categories of OPC techniques although 

mathematically they are the same in the sense that 

they eventually act as function approximators 

providing the appropriate mappings minimizing the 

designed loss functions. The output can be either 

mask patterns, source patterns or the labels. We will 

leave these discussion to the next section where the 

pattern selection and hotspots detection et. al. are 

discussed. 

3.3. Machine Learning Modified Workflow 

As discussed by Peter De Bisschop[26], the 

whole OPC workflow strongly depends on the data 

collection and selection. The main point is: firstly, 

the feature structures among the billions on the VLSI 
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chip should be selected to build the empirical models 

unless the physical process is clear enough to be 

simulated in the first principle way. The latter is 

rarely the case we confront in the realistic optical 

lithographic and etching processes. So the 

establishment and verification of the models as the 

simulators of the lithographic or etching processes 

require the data collection and selection even before 

the machine learning techniques are widely 

introduced into the OPC regime; secondly, after 

OPC process, the modified mask patterns or the 

source conditions should be verified both by the 

computational method (computational verification) 

and experimental method (on-wafer verification) 

before the masks are accepted for the production. As 

a result, feature pattern selection for the model 

calibration and on wafer verification et. al. become 

critical steps. The data sampling problem becomes 

important for an efficient and robust OPC workflow. 

The machine learning techniques can solve such kind 

of problems well. The basic idea is that we should be 

able to find a proper space defined with correct basis, 

in which the dimensional reduction of the original 

data set can be naturally realized. Or, the low 

dimension manifold in a high dimensional space is 

discovered and the sampling is done on the manifold 

only. Both methods can dramatically reduce the 

required number of sampling points and the cost of 

the time consuming and expensive computational or 

experimental verification processes. Dmitry 

Vengertsev et. al.[45] define a hybrid space formed by 

the direct sum of image parameter space and 

geometric sensitivity space and use a modified K 

means method to cluster the data within the hybrid 

space. As a typical unsupervised learning method, 

data clustering helps the selection of the 

representative patterns and serves as a kind of 

dimension reduction process. Instead of the K means 

method, the singular value decomposition (SVD) 

which can be treated as a form of the principle 

component analysis (PCA) can also be applied to the 

matrix representation of the layout patterns defined 

in the vector space manually constructed[46].  

We already discuss the importance of the latent 

feature vector generation under the background of 

the machine learning based optimizer. It is also the 

foundation of the pattern selection we just discussed 

because the dimension reduction we mentioned is 

actually finished by the learning of a low 

dimensional representation of the original dataset. 

Now, the same thing goes with the hotspots detection. 

We need to identify the layout structures which can 

not be manufactured with the acceptable EPE et. al. 

under the current process conditions and carry out 

finer OPC for them. We are not able to carry out the 

forward simulation for all the structures on the chip 

due to the huge computational power that requires, 

or we just want a better solution[47]. We are neither 

satisfied with the traditional pattern match method[48, 

49] because it can not predict the hotspot correctly 

when patterns not included in the library are met. 

Transforming such problems into the image 

classification problem[50] and solving it with the 

prevailing machine learning techniques then become 

interesting. The basic idea is we learn the low 

dimensional feature vectoral representation of the 

layout patterns and use the classifier to distinguish 

the pattern with hotspots from the pattern without 

hotspots within certain region in the latent space 

formed by the learned feature vectors. You can also 

use them to do data clustering and realize the 

pattern feature selection. The effectiveness of such 

kind of method strongly depends on the 

generalization capability of the machine learning 

model. It is not well understood when the learned 

model generalizes well especially when the deep 

learning techniques are applied. Even without the 

theoretical guarantee, these machine learning 

methods are applied in the hotspots detection widely 

and they are proven effective by the experimental 

facts. Matsunawa et. al.[51] use the human designed 

feature vectors to do the classification for the 

hotspots detection with Adaboost method. Taking 

advantage of the end to end training capability of 

deep CNNs, Moojoon Shin[52] et. al. apply different 

architectures of CNN binary classifier to fulfill the 

speed and accuracy requirement of hotspots 

detections. The probability of a pixel being classified 

as the hotspot is predicted by inputting the image 

centered at that pixel into the CNN. After scanning 

the whole layout, the probabilistic distribution of the 

hotspots at the pixel level is output as the final result. 

The schematics is shown in Figure 9. 

Of course, even CNNs have the advantage in 

the sense that they automatically include the 

translational invariance and tend to learn the local 

information of image while encoding thus 

dramatically reduce the number of learnable 

parameters, the general fully connected deep neural 

network (DNN) can also be applied to carry out the 

hotspots detection task[53]. To improve the 

performance of the DNN hotspots detectors, 

different variants of DNN have been explored[33]. For 

example, inception mechanism is introduced by   
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Figure 9. HS detection using sliding window scan and coordinate extraction[52]. 

 

Ran Chen et. al.[54].  Haoyu Yang et. al. modifies the 

CNN architecture and replace all the pooling layers 

with 3×3 convolution layers[55]. 

4. Conclusions 

Machine learning techniques especially the 

deep learning method can dramatically improve the 

accuracy and computation speed of simulation and 

optimization process and the full chip level 

optimization techniques should become available 

and it will further change the whole workflow of 

current OPC technology[56]. 
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Abstract: This paper presents a TCAD-based methodology to enable Design-Technology Co-

Optimization (DTCO) of advanced semiconductor memories. After reviewing the DTCO approach 

to semiconductor devices scaling, we introduce a multi-stage simulation flow to study the device-

to-circuit performance of advanced memory technologies in presence of statistical and process 

variability. We present a DRAM example to highlight the DTCO enablement for both memory and 
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technology scaling for a given set of manufacturing equipment. 

Keywords: DTCO, Statistical Variability, Process Variability, Semiconductor Memories, DRAM, 

CMOS, Scaling. 

 

 

 

 
*
 Address all correspondence to Xi-Wei Lin, E-mail: xiwei@synopsys.com  

1. Introduction 

The pace of the technology roadmap for 

semiconductor was conventionally marked by 

scaling of the patterning pitches, with the main goal 

to halve the cost per transistor at each subsequent 

technology node. A certain level of uncertainty 

affecting the time-to-market of a technology node is 

intrinsic in this scaling approach. Today, the 

semiconductor industry is facing a paradigm shift, 

with scaling now being driven by annual technology 

releases for both memory and logic. This new 

approach is driven by schedule to deliver the best 

possible combination of technology improvements 

within a year. In order to support this endeavour, the 

semiconductor industry has adopted a Design-

Technology Co-Optimization (DTCO) methodology, 

which requires fundamental figures of merit, namely 

Power-Performance-Area (PPA) or its variant Power-

Performance-Area-Cost (PPAC), to be evaluated and 

optimized across a set of different possible 

technology improvements to maximize the gain 

brought by each annual technology update [1]–[6]. 

Furthermore, memory manufacturing has to deal 

with specific set of challenges, which are ruled by 

parametric yield and process window optimization 

for both periphery and the memory cell [7]–[10]. 

In this paper we will use a DRAM example to 

highlight the DTCO enablement for both memory 

and periphery. DRAM represents a well-suited test-

bed because the continuing efforts in its processing 

technology have enabled dramatic feature-size 

reduction and unprecedented levels of integration 
[11]–[14], but also increased the severity of parasitic 

effects [15]. In particular, during the design cycle, 

attention has to be put on the DRAM cell transistor 

leakage current, which dictates DRAM refresh time 

(tREF) and, in turn, affects manufacturing yields. It 

is of utmost importance to highlight that the DTCO 

methodology cannot be focused to the average 

circuit behaviour. Indeed, the ultimate failure in yield 

is governed by the leakage current of extreme-tail 

cells (<10−6 probability). These cells may exhibit a 

few orders of magnitude higher leakage than the 

nominal cell, with a statistical distribution that is 

influenced by both process (e.g. geometry, doping 

profiles) and intrinsic statistical variability (e.g. 

random discrete dopants, random traps). Although 

innovative characterization techniques have been 

proposed to experimentally evaluate the DRAM cell 

transistor leakage current distributions [16], it 

becomes also essential to have available modelling 

platforms that enable a fully variability-aware 

Design-Technology Co-Optimization (DTCO) of 

DRAM circuits to evaluate and optimize DRAM 

yields in the presence of process and statistical 

https://doi.org/10.33079/jomm.20030409
mailto:xiwei@synopsys.com
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Figure 1. Simulation-based DTCO methodology for the DRAM refresh time optimization in presence of 

statistical and process variability.  

 

variability with reduced requirements on costly and 

slow silicon manufacturing cycles. 

The remainder of the paper is organized as 

following: Section 2 introduces our simulation-based 

DTCO methodology; Section 3 presents the DTCO 

simulation results for the memory part, including 

variability and reliability issues affecting write and 

retention operations; Section 4 presents the DTCO 

simulation results for the periphery circuit (Sense 

Amplifier) including variability and interconnect 

parasistics analysis affecting the sensing operation; 

finally, Section 5 will summarize the results and 

draw the conclusions. 

2. Simulation-based DTCO Methodology 

In this paper we present a DTCO modelling 

approach enabling the optimization of memory and 

periphery performance for a DRAM array. The 

methodology includes the early injection of 

statistical metrics into the design/optimization cycle. 

This multi-stage simulation flow, which allows 

accurate and extensive exploration of the design 

space by taking into account both memory and 

periphery performance figures of merit and their 

statistical behavior, consists of two branches (Figure 

1): memory branch and periphery branch.  

The memory branch (indicated with “M”) 

targets the study and optimization of write and 

retention variability and it features the following 

steps: (i-M) accurate process structure generation for 

the memory cells by means of Process Explorer 

(layout to 3D structure) [17] and Sentaurus Process [18] 

to capture process and doping profile variations, (ii-

M) accurate device simulation of the nominal 

transistors by means of Sentaurus Device [19], (iii-M) 

statistical simulation of leakage through  capacitor 

dielectrics by means of the Kinetic Monte Carlo 

(KMC) engine of Sentaurus Device [19]; (iv-M) 

Garand VE [20] for the physics-based variability 

simulation of trap-assisted leakage current in 

presence of random discrete dopants (RDD), (v-M) 

Mystic [21] to extract statistical compact models; (vi-

M) Raphael FX [22] to extract parasitic RC 

components, including bitline capacitance and 

resistance for a given layout.  

The periphery branch (indicated with “P”) 

targets the study and optimization of the sensing 

operation and it features the following steps: (i-P) 

accurate process structure generation for the CMOS 

part by means of Process Explorer (layout to 3D 

structure) and Sentaurus Process  [17],[18] to capture 

process and doping profile variations, (ii-P) accurate 

device simulation of the nominal transistors by 

means of Sentaurus Device [19], (iii-P) Garand VE [20] 

for the physics-based variability simulation of 

CMOS transistors in presence of RDD, line edge 

roughness (LER), metal gate granularity (MGG) etc.
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Table 1. Variability components affecting the DRAM refresh time addressed by our DTCO flow. 

Variability Component Flow Branch Simulation Tool  

DRAM Cell Process Variations Memory Process Explorer, S-Process 

Storage Capacitor Write Variations Memory S-Device, Garand VE 

Storage Capacitor Leakage Variations Memory S-Device KMC 

DRAM Transistor Leakage Variations Memory Garand VE 

DRAM Disturbs Variations  

(not included in this work, see ref [26])  

Memory S-Device 

Cell Array RC Extraction Memory Raphael FX 

   

Sense Amplifier Process  Periphery Process Explorer, S-Process 

Local Transistors Mismatch  Periphery Garand VE 

Interconnects RC extraction  Periphery Raphael FX 

 

Line-to-line Dielectric Reliability 

(not included in this work, see ref [27]) 

Bitline and wordline profile variations  

(not included in this work) 

 

Memory/Periphery 

 

Memory/Periphery 

 

S-Device KMC 

 

S-Litho, Proteus  

 

 (iv-P) Mystic [21] to extract statistical compact 

models; (vi-P) Raphael FX [22] to extract 

interconnects resistances and capacitances (RC).  

The two branches are then merged together for 

a statistical SPICE simulation analysis including 

memory, periphery and parasitic components, which 

we perform by means of the Monte Carlo circuit 

generator RandomSpice [23] and HSPICE [24]. Table 1 

summarizes the variability components affecting the 

refresh time of a DRAM cell, which are addressed 

by our DTCO flow. In this work we are neglecting 

variations associated with the reliability of the 

DRAM transistors (statistical Row-Hammer [26]) and 

interconnects (statistical dielectric 

leakage/breakdown [27]). Furthermore, this DTCO 

analysis could be extended by considering the 

bitline/wordline shape variations: indeed Optical 

Proximity Correction (OPC) simulation could be 

employed to generate geometrical contours that 

represent wide (best R worst C) and narrow (worst R 

best C) bitline/wordline, therefore evaluating the 

performance of these variation corners. 

3. Memory DTCO Analysis 

The goal of the simulation-based DTCO flow 

shown in Figure 1 is to achieve the simulation based 

estimation and optimization of the DRAM refresh 

time (tREF) and, in turn, DRAM yield, in presence 

of process and statistical variability and for a given 

set of manufacturing assumptions. In this section, we 

will address the issues limiting tREF at the memory 

array level, whilst in Section 4 we will focus on the 

CMOS periphery limitations (Table 1). 

3.1. DRAM Transistor – Process and Statistical 

Variability 

The Synopsys TCAD platform [17]–[23] is used 

for the generation and simulation of the 3D DRAM 

array. The DRAM structures are constructed by 

means of Process Explorer [17] starting from a 6F2 

tilted-cell layout representative of a 2z nm 

technology node (Figure 2). A single cell and two 

adjacent neighbors are then cut-out to perform 

accurate doping implantation and device simulation 

by means of S-Process [18] and S-Device [19], 

respectively. Different process conditions are 

simulated by changing WLetch (WL recess etch) and 

Dose (roll-off) parameters by +/- 20% (Figure 2) to 

generate a range of structures corresponding to 

different process conditions, or process variations. 

The cell transistor, consisting of a saddle-fin 

featuring buried metal WL and shared common BL 

(Table 2), is then re-meshed to enable the statistical 

simulation of ON and leakage currents by means of 

the drift-diffusion variability engine Garand VE [20].  

It has been previously shown that discrete 

doping can play a fundamental role in determining 

the stochastic dispersion of both drive current and 

leakage current in transistors. In this work, we 

consider the trap-assisted band-to-band tunneling 

(TAT) as the dominant contribution to the transistor 

leakage. The experimental results, in fact, clearly 

show that the transistor leakage current is a function 

of the number of defects in silicon, their energy level 

in the bandgap, and the electric field [6]. The trap- 
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Figure 2. Layout to Process and Device simulation. Process variability is accounted for by varying the 

implantation dose and the gate height parameters by +/-20% with respect to the nominal process. 

 

           

Figure 3. ON current average (left) and variability (right) performance across the space of process variations. 

 

assisted contribution is modelled through an 

enhancement of the trap capture cross-section in the 

conventional Shockley-Read-Hall (SRH) generation 

term. The enhancement can either be computed by 

Hurkx-like local models or by non-local tunneling 

path approaches. For each process corner, Garand 

VE simulates hundreds of statistical instances. Each 

instance features a different configuration of random 

discrete dopants (RDD) and thousands of single-trap 

positions are evaluated to gather the TAT leakage 

statistics. Once the single-trap leakage statistics are 

obtained, any other statistics due to an arbitrary trap 

density can then be obtained at SPICE level by 

convolution of the single-trap cumulative 

distribution functions (as detailed in [28]). 

Table 2. DRAM Transistor nominal dimensions and 

electrical parameters. 

Critical Dimensions  

WLetch 60nm 

Peak Dose 2e19cm-3 

Technology node 2z nm 

Electrical Parameters  

V(core) 1.0V 

V(bulk) -0.8V 

V(bbw) -0.2V 

Figure 3 shows the results of the Garand VE 

analysis performed to evaluate the impact of RDD 

on the ON-current for the DRAM cell, across the 

WLetch and Dose process variations space. A 10% 

variation in the mean ON-current can be observed, 

whilst the ON-current standard deviation varies from 

3% to 6% of the nominal ON-current value. These 

variations can be understood by considering that the 

combination of WLetch and Dose define the gate to 

source/drain overlap. With a high WLetch, there is 

significant underlap, leading to low ON-current and 

high variability. 

To evaluate the leakage variability, we have 

performed 200 Garand VE simulations for each 

process corner. For each RDD configuration, the 

single-trap TAT leakage is simulated by sweeping 

the trap position across the drain (storage node 

contact) pillar region with a 0.5nm spacing, leading 

to ~70,000 trap evaluations per each RDD 

configuration (14,000,000 trap configurations for 

each simulated process condition). Figure 4 shows 

the leakage complementary cumulative distribution, 

highlighting that the interaction between discrete 

traps and random dopants leads to extended 

exponential-like tails. Moreover, both average and 

tail behavior strongly depend on the process 
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Figure 4. Leakage complementary cumulative distribution for different process corners (left); the worst leakage 

value is plotted across the space of process variation (right) as measure of the leakage variability. 

 

variations. It is important to note that the variability 

of ON-current is anti-correlated to the variability of 

leakage. Therefore, the best process corner that 

minimizes ON-current variability is also be the worst 

corner that maximizes leakage variability. This 

imposes a trade-off between ON-current and leakage 

performance and, in turn, between DRAM write time 

(tWR) and tREF performance. 

Once the statistical TCAD results are obtained 

across the space of process variations, compact 

models can be extracted by means of a response 

surface methodology in Mystic [21], as detailed and 

validated in [28]. It is worth remarking that the 

leakage due to many random traps can be obtained 

analytically by self-convolution of the single-trap 

statistics. 

3.2. DRAM Capacitor Dielectric Leakage – 

Statistical Variability 

DRAM capacitors utilize high-k dielectrics to 

maximize capacitance for a given technology node.  

Defects in high-k materials may cause undesirable 

leakage currents due to trap assisted tunneling. The 

leakage currents in the capacitors in a memory 

device have been one of the bottlenecks for further 

scaling down. Therefore, a systematic way of 

modeling and understanding the trap assisted 

tunneling transport mechanisms is required to 

support further downscaling. 

To calculate the leakage current for a metal-

insulator-metal structure, we have developed a 

stochastic reliability simulator, Sentaurus Device 

KMC [19], based on the kinetic Monte-Carlo method. 

The simulator randomly distributes discrete defects 

in insulator regions of a 3D capacitor structure. 

These discrete defects act as traps of carriers in an 

insulator that can affect device reliability. To 

simulate the electron transport via the traps, the 

electron hopping event rates are calculated with 

various physical models [29], including direct 

tunneling, Fowler-Nordheim (FN) tunneling, 

inelastic multi-phonon trap-to-trap and trap-to-

electrode tunneling [30], and Poole-Frenkel (PF) 

emission [31]. The direct tunneling and FN tunneling 

are leakage currents without traps; they are 

determined by the intrinsic insulator properties. With 

the traps in an insulator, the inelastic multi-phonon 

processes dominate the tunneling current. These 

processes involve the emission and absorption of 

multiple phonons. In the PF emission, the localized 

electron in a trap is thermally excited to the 

conduction band of an insulator. Furthermore, the 

potential energy distribution is calculated by solving 

the Poisson equation with the image charge barrier 

lowering near electrodes as well as the short-ranged 

trap potentials. 

With the KMC method, all possible electron 

transport events are considered as stochastic process 
[32]. The steady state current I_k is calculated by 

counting the net electrons at the electrode ΔN_k 

within Δt by I_k=(qΔN_k)/Δt, when the stochastic 

process reaches steady states. 

Figure 5 shows the trap assisted tunneling 

current as a function of the electric field in a HfO2 

capacitor. The thickness of the HfO2 layer is 5nm, 

and the outer diameter of the cylinder is 60nm. The 

electrodes are TiN. The leakage currents are 

compared according to the solid states of the 

insulator, i.e., monocrystalline, amorphous, and 

polycrystalline HfO2. For the monocrystalline and 

amorphous HfO2, the traps are randomly distributed 

in the bulks where the trap concentrations are 2×1019 

cm-3 and the trap locations are identical for both 

structures. For the polycrystalline HfO2, the same 

number of traps are distributed only on the grain 

boundaries, which result in smaller trap-to-trap 
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Figure 5. Leakage current in cylinder capacitors. Black line: Averaged current in the crystalline insulator, traps 

are randomly distributed in the bulk with the same trap energy of 1.8eV. Red line: Averaged current in the 

amorphous insulator, traps are randomly distributed in the bulk. Blue line: Averaged current in the 

polycrystalline insulator, traps are randomly distributed only on grain boundaries. 

 

distances in the polycrystalline HfO2. For the 

crystalline HfO2, a constant trap level, 1.8 eV is used 

for all traps. In amorphous and polycrystalline HfO2, 

the trap levels are randomly defined with the 

Gaussian distribution of the average 1.8 eV and the 

standard deviation 0.5 eV. In the comparison of the 

leakage currents in the monocrystalline and 

amorphous HfO2, the leakage current in the 

monocrystalline HfO2 is larger than the one in the 

amorphous HfO2 for low bias, while the leakage 

current in the amorphous HfO2 becomes larger as the 

bias increases.  For low bias, the inelastic tunneling 

requires more phonons in the amorphous HfO2 as 

compared with the monocrystalline HfO2, because 

the energy differences between the traps are zero in 

the monocrystalline HfO2. For high bias, the number 

of phonons for the inelastic tunneling process 

increases linearly as the electric field increases in the 

crystalline HfO2, while the tunneling paths requiring 

fewer phonons can be found in amorphous HfO2 

where the trap levels vary over space.  

In comparison of the leakage currents in the 

monocrystalline and amorphous HfO2, the leakage 

current in polycrystalline HfO2 is larger for the bias 

below 1.5 V, while the averaged leakage currents are 

almost identical for both cases when the bias gets 

higher. For high bias, the single-trap assisted 

tunneling processes, i.e. electrode-to-trap and trap-

to-electrode tunneling, dominate the leakage current. 

Thus, both leakage currents of amorphous and 

polycrystalline HfO2 are similar. However, for low 

bias, in the polycrystalline HfO2, the leakage current 

is dominated by trap assisted tunneling which is the 

trap-to-trap tunneling process because of smaller 

trap-to-trap distances on the grain boundaries. It 

results in larger leakage current in the polycrystalline 

HfO2 than one in the amorphous HfO2. 

For this simplified example, the capacitor 

leakage is significantly lower than the transistor 

leakage, although this may not hold true for more 

realistic structures and with advanced scaling. 

Therefore, this KMC analysis represents an 

important step for the accurate optimization of the 

DRAM tREF by means of a TCAD-based DTCO 

platform. 

3.3. Cell Array RC Extraction 

In the previous sections we have shown how to 

evaluate the transistor ON-current and leakage and 

their stochastic dispersions. These TCAD data can 

be brought to SPICE level via a compact model and 

a circuit simulation can be performed to obtain 

outputs such as the DRAM writing time or refresh 

time. However, this task cannot be achieved without 

an accurate extraction of the RC parasitics, including 

bitline (BL) capacitance and the world line (WL) 

resistance. The cell array capacitance and resistance 

extraction are performed by using Raphael FX [22], a 

3D field solver, therefore offering the highest 

accuracy for the RC extraction. Moreover, thanks to 

distributed processing (DP), the tool can keep run-

time at optimal levels enabling, for example, the RC 

extraction of large areas within hours (instead of 

days). The resistance extraction accuracy is also 

increased by including surface scattering effect that 

will lead to an increased resistivity when metal lines 

cross-sections are scaled down.  

Figure 6 shows the cell Array RC extraction 

flow starting from a layout-based structure 

generation by means of Process Explorer. Clips are 



Amoroso et al.: Enabling Variability-Aware Design-Technology Co-Optimization for Advanced Memory 

Technologies 

J. Microelectron. Manuf. 3, 20030409(2020) 7  

 
Figure 6. Cell Array RC Extraction. The extraction flow starts from a layout-based structure generation by 

means Process Explorer. Clips are user-specified to identify the domains of RC extraction, which is then 

performed by Raphael FX. 

 

user-specified to identify the domains of the RC 

extraction, which is then performed by Raphael FX. 

Table 3 reports single cell capacitance and resistance 

extracted values. It is worth noting that the BL to SN 

capacitance dominates the total (~100aF), whilst the 

BL to BL coupling is relatively weak (~1aF) and the 

BL to WL coupling is negligible (0.01aF). The WL 

resistance is around 17 Ohms across the area of 

extraction. These results will be included in the 

statistical SPICE analysis presented at the end of 

Section 4. 

 

Table 3. Single-cell Capacitance and Resistance  

extracted values. 

Bit Line Capacitance Extraction C [F] 

BL3 BL2 1.54 ×10-18 

BL3 BL4 8.48 ×10-19 

BL3 BL5 8.95 ×10-22 

BL3 SN 1.23 ×10-16 

BL3 WL2T 2.03 ×10-20 

BL3  WL4T 2.13 ×10-20 

Total Capacitance  1.26 ×10-16 

Word Line Resistance Extraction R [Ω] 

WL2B WL2T 16.9 

WL3B WL3T 16.8 

4. Periphery DTCO Analysis 

In this section we present a TCAD-to-SPICE 

methodology for the early SPICE model extraction 

and performance evaluation of the DRAM CMOS 

periphery. We will focus our analysis on the Sense 

Amplifier (SA) circuitry, whose performance will 

determine the read operation reliability and, 

ultimately, the tREF margin. 

Global variations could be modeled via 

different process splits accounting for the systematic 

variations in implant dose, geometrical dimensions 

and layout dependent effects – as already presented 

for the DRAM memory transistor in Section 3. 

However, because the Sense Amp performance will 

be mainly determined by the transistor local 

threshold voltage (Vth) mismatch, in the following 

we are going to consider only source of local 

statistical variability. This assumption will not distort 

the analysis results, unless for that cases where the 

process variation and local variation are highly 

correlated. Figure 7 shows the layout-based 3D 

generation of the DRAM periphery, which is 

achieved by means of Process Explorer [17]. S-

Process [18] is employed for accurate doping and 

stress simulation, whilst S-Device [19] is used to 

generate the reference I-V and C-V characteristics 

that are used for the compact model extraction of the 

nominal device. A bulk MOSFET technology 

featuring a nominal gate length of 32nm and a width 

of 200nm is used a test-bed for this analysis. 

4.1. Periphery CMOS Transistors – Statistical 

Variability 

To account for local variability, we deploy the 

variability engine Garand VE [20]. In a first stage, 

Garand VE is calibrated against the reference I-V 

curves from S-Device. This includes density gradient 

(DG) quantum corrections, inversion charge 

calibration and mobility model calibration. Then all 

major sources of local variation are physically 

modelled by running hundreds statistical instances of 

the nominal device. These sources include random 

discrete doping (RDD), line edge roughness (LER) 

and metal gate granularity (MGG) variability (if 

metal gate technology) or polysilicon gate
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Figure 7. Layout to Process and Device simulation for the CMOS periphery Sense Amplifier. A 32nm bulk 

technology is considered in this example. 

 

 

Figure 8. TCAD variability analysis considering separate and combined variability sources (RDD, LER, MGG). 

Results are for a width of W=25nm. The Sense Amplifier will have transistors featuring W=200 and the 

variability will be scaled inversely proportional to sqrt(WL).  

  
Figure 9. Compact Modelling extraction for NMOS and PMOS (RDD, LER and MGG combined). TCAD data 

in black and compact model results in red. 

 

 

granularity (PGG) variability (if polysilicon gate 

technology) [33]. Figure 8 shows the I-V curves for 

separate and combined variability sources, 

highlighting that RDD and MGG play the dominant 

role in determining the threshold voltage and ON-

current variations accounting to 15mv and 0.76µA 

(@W=0.2um), respectively. 

Once all the target I-V/C-V characteristics are 

generated using physical TCAD simulation, 

hierarchical compact models can be extracted by 
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Table 4. Sense Amp Interconnect Capacitance and Resistance extracted values. 

Capacitance Extraction for SPICE  C [F] 

C_19_5 

C_3_20 

C_6_18 

… 

SEB 

BLB 

PG1   

…           

nmT23  

0mT25 

2mT26 

… 

 6.02 ×10-19 

6.97 ×10-19 

5.31 ×10-18 

… 

Resistance Extraction for SPICE   R [Ω] 

R_0_1 ng2 0nmT18  1.50 

R_2_3 IIUW2UT24 BLB 3.79 

R_17_6 ng1 pg1  29.2 

… … …  … 

 

means of a two-stage process, involving: i) the 

extraction of ‘uniform’ or ‘base’ SPICE model; ii) 

local ‘statistical’ models extraction using a carefully 

selected subset of the compact model parameters, as 

detailed in [34]. The results of the extraction are 

shown in Figure 9 comparing the distribution of key 

figures of merit obtained from the physical TCAD 

variability simulation and the extracted statistical 

compact model. 

4.2. Periphery CMOS Interconnects – RC Extraction 

Similarly to the methodology performed for the 

RC extraction of the DRAM cell array, Raphael FX 
[22] is deployed to extract the interconnect RC for the 

3D structure generated by Process Explorer [17] 

(Figure 7). The output is a RC netlist in a SPICE-

ready format which can be imported, together with 

the transistor models, into the statistical circuit 

simulator RandomSpice [23]. Table 4 shows only few 

lines of the extracted RC netlist. 

4.3. Statistical Circuit Analysis 

The simulated TCAD data is propagated into 

statistical SPICE models via the compact modelling 

extraction presented in the previous sections. The 

metal lines capacitive and resistive element are also 

added to the final netlist. For each Monte-Carlo 

instance of the DRAM cell, a unique leakage current 

is generated using the fitted TCAD data distributions. 

These randomized leakage values are converted to 

BSIM4 junction leakage parameters. The leakage 

compact models can reproduce the statistical TCAD 

data at arbitrary trap densities and storage node 

voltages, as verified in [28]. It is worth to remark 

that RandomSpice [23] directly generates the leakage 

values for the DRAM transistor: because we are 

focusing on a statistical tail analysis, the HSPICE [24] 

simulations can be limited to the circuits where the 

DRAM cell leakage current is greater than a 

threshold limit (here >1 fA). As a result, only ~400k 

out of 10M generated circuits (representing roughly 

10Mbit) are run through HSPICE – enabling a very 

accurate, yet efficient, high-sigma analysis.  

To approximate tREF through SPICE 

simulation, we combine the output from the SA 

analysis with DRAM cell analysis. The SA 

variability is important as it defines how much 

differential is required between the sensing BL and 

the reference BL. Local MOSFET mismatch can 

“offset” a SA towards one state or another, and the 

natural solution to this is to utilize larger devices in 

this circuit. However, a larger SA means that 

proportionally, less of the wafer area is memory cells, 

reducing overall memory density and increasing cost.  

Utilizing the variability aware SPICE models 

previously extracted we can explore the tradeoff 

between device width and SA offset voltage as show 

in Figure 11 (left). In this case we select a W=200nm 

SA design, which leads to 48mV 3σ offset. We can 

then determine the minimum storage capacitor 

voltage required to produce a 48mV delta in the BL 

voltage. In this case, as shown in Figure 11 (right), 

0.78V must be present on the storage capacitance in 

order for the ‘1’ state to be correctly detected by a 3σ 

sense amp. Finally, this voltage can be plugged into 

the write-and-hold DRAM cell simulations.  

Initial simulations, in Figure 11 (left) show the 

output of a 1e7 sample of cells, where process 

conditions are kept “nominal”. Here the only 

variations which are applied relate to RDD and 

RDD+TAT interactions, and tREF at 1e-7 

probability comes out at ~200ms. Finally, we also 

randomize process conditions for the DRAM cell – 

in this case this is in the form of (Dose, WLetch) 

variation. Each datapoint here corresponds to a 1e-7 

probability cell, mixed with a 3σ sense-amp to 

extract a tREF distribution per-10Mb array. The 

results, in Figure 11 (right) show that, although 

nominal 10Mb array tREF is ~200ps, array to array 

tREF 1σ is ~15ms. Although the resultant tREF large 

compared to reported tREF values– it is worthwhile 

noting that this analysis was performed at 27C, and 
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Figure 10. (left) Sense-amp offset analysis, showing offset vs. nMOS/pMOS device size. (right) Determination 

of minimum storage node voltage required to correctly sense the ‘1’ state of the capacitor. 

 

    
Figure 11. (left) tREF tail at a nominal process condition, showing how long it takes for Vsnc to drop to 0.78V. 

(right) Distribution of tREF produced at 1,000 different random process conditions – effectively measuring 

tREF from 1,000 ~10Mb arrays. 

not worst-case temperature, where tREF time can 

easily drop by a significant factor up to 0.3, when 

shifting from 27C to 80C [35]. Final, these results can 

be compared to tREF/yield specifications for the 

process – if yield targets are not achieved, updates in 

the design may be considered. For example, resizing 

or redesigning of the sense-amp, to reduce the BL 

differential requirements and increase tREF can be 

quantitatively evaluated. This, and other process 

updates can be quickly evaluated by rerunning the 

flow with updated inputs. 

5. Conclusions  

The semiconductor industry is facing a 

paradigm shift, with scaling being now driven by 

more frequent technology releases for both memory 

and logic. DTCO methodology becomes the key to 

unlock the potential of each release, by means of the 

efficient and accurate exploration of different 

technological variations and the optimization of 

fundamental figures of merit such as Power-

Performance-Area-Cost, memory cell retention time, 

and parametric yields. In this paper we have 

presented a DTCO analysis of an advanced DRAM 

technology, aiming at the optimization of the DRAM 

refresh time. In particular, we have shown how the 

several components affecting the memory and the 

logic part can be captured by a multi-stage 

simulation approach including both process and 

statistical variations. This enables a variability-aware 

DTCO particularly suited for optimizing 

performance and yields of advanced memory 

technologies, reducing manufacturing cost and cycle 

time and accelerating time-to-market. 
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Manufacturing and Process Technology Development 
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Abstract: Chip designers employ computer-aided design, circuit simulation, and design rule check 

systems. Lithography engineers employ model-based OPC (Optical Proximity Correction) and 

model-based print-simulation systems. Reticle inspection teams employ Aerial Image 

Measurement Systems® and Virtual Stepper® Systems. These teams are accustomed to evaluating 

and deploying state-of-the-art computational systems. When real-silicon fabrication begins, 

however, the teams responsible for line monitoring, wafer inspection, and yield attainment operate 

without the benefit of similarly advanced computational systems. In this paper we describe such a 

system and explore its applications and benefits. The system has received three U.S. patents [1-3] 

and brings together the significant potential of CAD (Computer Aided Design) layout (GDS, 

OASIS), Die-to-Database, and Machine Learning to build a dynamic, self-improving 

computational system. Featuring care area generation, advanced machine learning-based SEM 

(Scanning Electron Microscope) sampling that optimizes both DOI (Defect of Interest) capture rate 

and discovery of new defect types, comprehensive extraction of all Information of Interest (IOI) 

from all SEM images, detection of defect types not possible before, massive pattern fidelity 

analysis, full chip pattern decomposition and risk scoring via machine learning, innovative PWQ 

(Process Window Qualification) analysis and process window determination, risk assessment of 

new tape-outs, large scale in-wafer OPC verification and more, the system delivers a 

comprehensive pattern centric platform for process technology development and manufacturing. 

Keywords: Die-to-Database, Full Chip Decomposition, Machine Learning, Defect Discovery, 

Pattern Fidelity, Pattern Risk Scoring, OPC Verification, Process Window Qualification. 
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1. Introduction 

At every major technology node, the density of 

transistors per unit area approximately doubles, and 

so does the quantity of raw data that fabs need to 

extract, track, and analyze. Compounding the 

problem is the fact that doubling the density of 

transistors means shrinking their size. Not only are 

smaller geometries harder to fabricate, they are 

harder to inspect. The semiconductor industry has 

witnessed a rapid progression of technology nodes 

thanks to advancements in lithography such as ArF 

Immersion and EUV (Extreme Ultra Violet 

wavelength), and attendant advancements in material 

stacks. These advancements have precipitated 

advancements in adjacent areas. For the areas of 

wafer inspection, line monitoring and yield 

enhancement, adjacent advancements have been 

made in E-Beam (electron beam) and SEM 

technologies that have the ability to detect and 

resolve increasingly smaller deviations in 

increasingly smaller geometries – and at relatively 

higher speeds. However, these tools are still 

throughput-limited and fabs continue to employ a 

combination of (a) high-speed low-resolution optical 

tools and (b) low-speed high-resolution E-Beam and 

SEM tools. 

Driven by market and technology demands, 

leading manufacturers of E-Beam and SEM tools are 

investing aggressively in new technologies such as 

faster single-beam systems (that feature larger spot 

sizes while retaining high resolutions) and multi-

beam systems to confront the continuing challenges 

of throughput and coverage. But hardware alone is 

not sufficient for yield learning and line monitoring. 

Hardware generates raw data, but not information. 

Software generates information and, more 

importantly, actionable information.  

In this paper we present a pattern-centric 

computational system for the fab that leverages the 

fields of CAD layout (GDS/OASIS), Die-to-

Database, and Machine Learning to enable bold new 

opportunities for wafer inspection, SEM review, 

defect discovery, (Focus Exposure Matrix) 

FEM/PWQ analysis, Litho/OPC optimization, 

pattern fidelity monitoring, yield prediction and risk 

https://doi.org/10.33079/jomm.20030410
mailto:abhishek@anchorsemi.com
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Figure 1. Intended Patterns are represented in the CAD Layout, and Printed Patterns are represented in SEM 

images, from which the Printed Pattern Database is built. 

 

assessment (especially for new tape-outs), and more. 

We begin with a brief discussion of the technology 

before focusing on value-added applications. 

2. Building a Pattern Centric 

Computational System 

Because the essential task of a semiconductor 

wafer fab is to print patterns onto the wafer, 

Anchor’s computational system is designed to be 

pattern centric. The CAD layout is a database of 

patterns. OPC is performed on patterns. Mask writers 

etch patterns (contained in MEBES files). 

Lithography process windows are determined using 

FEM/PWQ techniques that analyze patterns in each 

focus/exposure modulation. Test chips are composed 

of a diversity of patterns. DFM (Design for 

Manufacturing) databases record weak patterns. 

DRC (Design Rule Check) rule decks are designed 

to avoid problematic pattern layouts. 

Patterns are indeed essential components. But 

the notion of patterns takes a back seat in the 

operation of the wafer fab. This is not necessarily 

desirable, but it is understandable because (a) the 

design house is CAD based, (b) the OPC team is 

CAD based, and (c) the mask house is CAD based. 

But not the fab. Once the reticle or mask enters the 

fab, the digital side of manufacturing is essentially 

complete (where every digital “run” produces 

identical results), and the analog side begins (where 

every analog “run” produces slightly different 

results). Like snowflakes, no two wafers nor any two 

die are exactly alike. There are differences every 

time the wafer is exposed or developed or etched or 

planarized or implanted or cleaned. The process 

steps leading from the front end of line to the back 

end of line are analog steps. 

For a fab operating in the analog domain to 

communicate and coordinate more effectively with 

the Design, OPC and Mask teams that operate in the 

digital domain, it needs to adopt the language of 

patterns as well.  

For years, fabs have struggled to cope with 

patterns, often spending days or weeks of manual 

effort to analyze large quantities of FEM/PWQ 

results, for example, and provide actionable 

information to the OPC team or to appropriate 

process modules. 

Anchor’s computational system arises from the 

intersection of the two primary domains of intended 

and printed patterns shown in Figure 1, and consists 

of three pillars: 

1. Printed Pattern Database  

2. Design Decomposition Database 

3. Machine Learning 

3. Three Pillars of a Computational 

System for the Fab 

The CAD layout is a golden reference database 

of the intended patterns. Over the past decade and a 

half, use of CAD inside the fab has enabled new 

opportunities for yield analysis and wafer inspection. 

But is there an analog equivalent of the CAD layout? 

That is, is there a database of the printed patterns? 

As shown in Figure 2, if a database of printed 

patterns were to exist, it could once again enable 

new opportunities for process technology 

development and manufacturing. We call this the 

Printed Pattern Database, and it is the most 

fundamental of the three pillars of Anchor’s 

computational system. 

The printed pattern database is constructed in an 

intelligent manner that extracts and retains only the 

patterns of interest within each SEM image. Patterns 

of interest are identified by a set of parametric 

search rules that operate in real time on each image. 

Once extracted, each pattern of interest is assigned a 

class code corresponding to the rule that identified 

the pattern. For example, when a tip-to-line pattern is 

found, it is classified as a tip-to-line. When a tip-to-

tip pattern is found, it is classified as a tip-to-tip. 

This enables the user to query and study the yield 
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Figure 2. Three Pillars of Anchor's Computational System. 

 

impacts of specific types of patterns along with the 

variations of those patterns (e.g. study the 

differences in printability of tip-to-line patterns as a 

function of the gap between tip and line).  

The Design Decomposition Database is the 

next pillar. Each layer of interest in the CAD Layout 

is decomposed systematically into a collection of 

unique constituent patterns of a specified maximum 

size. A poly layer, for instance, will be fully 

decomposed into its unique constituent patterns.  

Decomposition is performed using the same 

parametric rule engine that builds the printed pattern 

database, which means that only patterns of interest 

are extracted when decomposing the full chip layout. 

This eliminates don’t care patterns that would 

otherwise burden the database with too many 

nuisance patterns. When a layer is fully decomposed 

into its constituent patterns of interest, the result is 

an abbreviated representation of the layer.  

The third pillar, machine learning, bridges the 

first two pillars and enables entirely new 

opportunities for yield learning and process 

optimization. 

There are at least two ways to model a real-

world system in order to make specific kinds of 

predictions. The conventional method is to build the 

model from first principles and tune the model until 

it begins to make sufficiently accurate predictions. 

This is done, for example, with OPC Simulation 

where selected properties of light waves, optics, and 

materials are combined into a mathematical model 

that takes a CAD layout (post-OPC layout) as input 

and generates a simulated print (contours) as output 

[4-6]. Unfortunately, such models have considerably 

expensive development, optimization, and run-time 

requirements. 

The alternative method is to allow a computer 

to build the model itself using appropriate training 

data that provide sufficient examples of if this goes 

in, then that comes out. The computer examines all 

of the inputs and their expected outputs and builds a 

self-learning model that can take a new input not 

seen before and infer or predict the output. Anchor’s 

computational system applies this idea in many ways, 

one of which is to learn from the Printed Pattern 

Database and assess the printability risk of all 

patterns in the Design Decomposition Database. 

The Printed Pattern Database (PPD) provides 

exactly the training set necessary for Machine 

Learning because it contains both the (a) intended 

pattern (in CAD database) and the (b) printed pattern 

(on die). This provides a rich training set because it 

contains numerous examples of if this goes in (the 

intended pattern), then that comes out (the printed 

pattern). New SEM images that are continuously 

being captured by the fab are added to the PPD. This 

dynamic environment allows the machine learning 

system to learn continuously and therefore improve 

its prediction accuracy. As the accuracy of the 

machine improves over time, the system moves 

closer to an expert system. 
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Figure 3. Noise characteristics of conventional care areas on the left may contain undetectable defects because 

they are buried below the noise floor. More homogeneous care areas result in less noise (right) within each care 

area group, allowing previously hidden defects (green) to rise above the noise floor and be detected. 

 

4. Value-Added Applications 

Numerous value-added applications are enabled 

by the three pillars of Anchor’s pattern centric 

computational system. We discuss a handful of those 

applications at an introductory level in order to keep 

this paper reasonable in size. 

4.1. Care Area Generation for Optical and E-Beam 

Inspection 

Optical inspection tools are still essential 

because of their high throughput and high wafer 

coverage. Although they lack the resolving power of 

an E-Beam tool, they incorporate advanced features 

such as KLA’s NanoPoint® / PinPoint® and 

Applied Materials’ Marker® that attempt to improve 

sensitivity to defects by reducing a particular type of 

system noise [7, 8]. To make use of these features, it is 

first necessary to perform full-layer pattern 

segmentation such that the patterns in each segment 

are relatively homogeneous. Inspection recipes can 

be optimized for each segment, thereby improving 

sensitivity in each segment, shown in Figure 3.  

Anchor’s Design Decomposition Database 

(DDD), with its ranked collection of patterns, 

enables this segmentation in a manner not possible 

before. High-risk patterns from the DDD are first 

placed into “look-alike” groups such that the patterns 

within each group are relatively homogenous. Then 

each look-alike group is exploded, which means that 

all instance locations of all member patterns are 

added to the group. Now each group contains a set of 

look-alike patterns and every location on the die 

where those patterns occur. Each group becomes a 

“segment” for a KLA or Applied Materials 

inspection tool. These segments, consisting of 

relatively high-risk patterns, can be inspected with 

high sensitivity without incurring high noise. 

E-Beam inspection tools are playing an 

increasing central role because of their ability to 

resolve tiny details on leading edge technology 

nodes. Although they lack speed and provide limited 

wafer coverage, advancements are being made to 

both speed and resolution. For any low-throughput 

tool, choosing the right care areas is of paramount 

importance. High risk patterns in the Design 

Decomposition Database are used to supplement a 

fab’s existing E-Beam care area. 

4.2. Review SEM Sample Plan 

Review SEMs have been used for decades to 

compensate for a lack of resolution on optical 

inspection tools. The patch images they produce are 

pixelated and cannot be used to adequately scrutinize 

the properties of every defect. A clear and detailed 

image of the defect is necessary to determine its type, 

its shape, its causal mechanism, and its impact to 

yield (killer versus non-killer). 

Because of the relatively slow throughput of 

Review SEM tools, it is necessary to pick a subset of 

the defects that were detected by the optical 

inspector. If a poor subset is picked or sampled, not 

much is learned. Fabs generally expect the sampled 

subset to (a) contain as many known defects of 

interest (DOI) as possible and (b) discover new 

defect types. It may seem straightforward to generate 

a sample plan that addresses both needs, but these 

are often competing requirements. If the sample plan 

is biased too much around (a), it will lose its ability 

to discover new defect types (b), and vice-versa. 

Given a sampling budget of N defects for SEM 

review, Anchor’s computational system generates a 

balanced sample plan while providing users the 

ability to bias the algorithm a little in either direction. 

Balancing the sample plan means choosing defects 

from the original population whose extended 

properties are likely to both (a) increase capture rate 

of known DOI and (b) discover new defect types. In 

broad terms, Anchor’s computational system derives 

these extended properties and creates a final sample 

plan through a combination of supplied defect 
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Figure 4. All Information of Interest Extracted from SEM Image. The image is scanned for both defects (left) 

and patterns-of-interest (right). All defects are classified and reported; and all patterns-of-interest are measured 

and tracked in the Printed Pattern Database. 

 

properties, generation of new properties through 

reprocessing of patch images, and machine learning.  

The computational system offers an additional 

option to apply pattern risk scores that are stored in 

the Design Decomposition Database. Sample plan 

candidates can be further filtered in or out based on 

their pattern risk scores. 

4.3. Comprehensive Extraction of Information of 

Interest (IOI) from SEM images 

Despite the paramount importance of high-

resolution SEM images at all technology nodes, and 

especially the leading technology nodes, they are 

predominantly wasted. At sub-14nm nodes in 

particular, each SEM image contains large amounts 

of information, but conventional workflows examine 

only the center of each image to classify a defect that 

is expected to be present in the center. Unfortunately, 

upwards of 50% to 70% of SEM images do not 

contain a “SEM visible” defect in the center. It is 

likely that some sort of anomaly is indeed present in 

the center because the optical column in the wafer 

inspection tool registered an anomaly. But a SEM 

tool is not an optical tool; the mechanics of electron 

beam emission and scatter are sufficiently different 

from the mechanics of photon emission, transmission, 

and reflection. So, a SEM tool is physically unable to 

see certain types of optical defects, and these are 

referred to as SEM Non-Visuals or SNVs. 

When we consider the low throughput of a 

SEM tool, the limited number of images that the 

fab’s cycle time allows, and the paramount 

importance of the SEM for yield learning, it is 

profoundly disconcerting to realize that 50% to 70% 

of SEM images are simply discarded for being SNV 

and the remaining ones are examined in a superficial 

manner (i.e., the center portion of the image is 

examined for the presence of a defect, and the defect 

is classified). The type of information that is most 

effective for yield learning also happens to be the 

information that is most often discarded. 

Anchor’s Printed Pattern Database and value-

added applications eliminate that waste. 

Every SEM image, regardless of SNV status, is 

analyzed from head to toe. As shown in Figure 4, 

every bit of Information of Interest (IOI) is extracted 

and recorded in the Printed Pattern Database for the 

value-added applications to exploit. Parametric 

pattern search rules are invoked on each image to 

find and extract Information of Interest while 

rejecting don’t care features. Information of Interest 

includes named patterns of interest and their 

measurements. For example, a named pattern might 

be a tip-to-line or a comb or a line end with single 

via or a set of dense thin lines, etc. Their 

measurements will indicate how well or how poorly 

each named pattern is printing – in effect, this 

enables pattern fidelity monitoring and analysis. 

Each SEM image is also checked for the 

presence of any number of predefined defect types 

such as hard breaks and bridges, soft breaks and 

bridges, line end pullback with exposed vias, 

misshapen contacts and vias, etc. Conventional 

workflows look for one defect per image (1-to-1), 

but Anchor’s computational system looks for all 

defects on each image (1-to-many). As we discuss 

later, Anchor’s die-to-database approach for defect 

detection enables new types of defects to be detected. 

4.4. Detection / Discovery of Defect Types not 

Possible or Practical Before 

Conventional defect detection methods rely on 

target-die to reference-die comparison where the 

reference die may be adjacent to the target die or it 
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Figure 5. Representative cross-section of FinFET device. 

 

 

                         

Figure 6. Design layout for Contact layers CA/CB (left) and Representative SEM image for Contact layer 

features (right). 

 

may be a preselected golden die. There are several 

limitations with this approach that prevent certain 

categories of defects from being detected and 

corrected, leading to diminished yields and extended 

process debug cycles. Here we list some of the 

defect types that are either impractical or impossible 

to detect using conventional methods, but which are 

fully detected by Anchor’s pattern centric 

computational system. Some of the examples in the 

ensuing subsections will refer to the representative 

cross-section shown in Figure 5. 

4.4.1. CA to CB Bridge (Short) 

CA and CB structures are part of the same 

contact layer, but they connect to different functional 

elements of the transistor. CA connects to source and 

drain, but CB connects to poly (PC). Variations in 

the patterning process for contact layers may result 

in undesirable bridging between CA and CB 

structures. This bridging could be the result of 

marginalities in (a) design, (b) lithography, or (c) 

etch. Without the chip design serving as the 

reference, it is impractical for yield engineering to 

distinguish between CA and CB in images where 

only the contact layer is visible. Cross sectional 

analysis may be needed to positively distinguish CA 

from CB because such an analysis reveals the under 

or previous layer to which each contact is connected. 

Anchor’s pattern-centric approach, however, can 

readily detect CA-CB bridges and distinguish them 

from CA-CA and CB-CB bridges, as shown in 

Figure 6. 

4.4.2. Line End Pullback Leading to Exposed 

VIA/Potential VIA Disconnection (Open) 

The manner in which a wafer inspection recipe 

is tuned or optimized can result in either a significant 

under-detection or over-detection of line-end 

pullbacks. Detection of pullbacks is essential, but not 

all pullbacks are killer defects or otherwise 

consequential. Pullbacks that are consequential 

cannot be differentiated from the entire set of 

pullbacks because conventional defect detection 

methodologies lack a comprehensive reference 

image from which such determinations can be made. 

D2DB-PM, however, uses the comprehensive chip 
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Figure 7. Target design for V0-M1-V1 overlay (left) and Representative M1 contour with design overlay. 

Exaggerated line-end pullback on both ends for discussion purposes (right). 

 

 

Figure 8. Target PC feature with Cut Mask (left) and Representative SEM image after cut or CT (right). 

 

design as its reference, and is therefore able to detect 

additional categories of defects such as ‘line-end 

pullback with exposed under layer via’ and ‘line-end 

pullback with future exposed upper layer via’ that 

will result in an electrical disconnect or increased 

resistivity, as shown in Figure 7. 

4.4.3. Cut Layer Issues (Short, Open) 

Cut Masks are commonly used in advanced 

nodes to assist in printing of short lines with narrow 

gaps, as explained in Figure 8. This widely adopted 

method prints long lines and then cuts them into the 

desired lengths with a subsequent cut mask. But the 

placement or overlay of the cut mask atop the 

previous layer is not always optimized and may 

render unwanted artifacts and errors on the wafer. 

Without access to a comprehensive reference image, 

conventional defect detection methodologies are 

unable to (a) detect all such defects and (b) to do so 

reliably every time. 

4.4.4. Extra Pattern Detection 

Extra features are sometimes produced 

inadvertently during the patterning of repeated 

structures. This is often seen in FIN and VIA layers. 

Conventional Die-to-Die detection methods are 

undependable because more than one die may have 

this issue. Anchor’s computational system can 

reliably detect extra patterns because the chip design 

serves as the reliable reference, shown in Figure 9. 

This approach is also used to detect any extra feature 

on wafer caused by residue or fall-on particle. 

4.4.5. Hole Analysis (Size Variation, Short, Missing) 

Contacts and vias (i.e. holes) are printed by the 

billions on large logic devices, and by the hundreds 

of billions on each wafer at each hole layer. They 

play an essential role in the routing of electrical 

signals between layers. However, there can be 

considerable variation in the printing of holes. 

Variations can arise from natural process drift, from 

proximity effects of neighboring clusters, from 

randomness in the material and topography, from 

etch chamber control, etc.  

Anchor’s computational system monitors hole 

size and shape, detects various types of shrinkages 

and enlargements, and identifies missing holes, as 

shown in Figure 10. Moreover, it can automatically 

identify all holes in an image and analyze each one, 

leading to exceptionally thorough analysis. 

4.5. Massive Pattern Fidelity Analysis 

Pattern fidelity – not just defectivity – has 

always been of importance to the fab, but fidelity 

monitoring has been limited to low-frequency, time-

consuming CD-SEM (Critical Dimension Scanning 

Electron Microscope) measurements [9,10]. CD-SEMs 

continue to play an important role in accurately 
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Figure 9. Target FIN feature (left) and Representative SEM image (right). 

 

 

Figure 10. Hole defect detection. 

 

measuring features from both orthogonal and oblique 

angles. These measurements are typically performed 

on preselected features on designated wafers. 

Anchor’s computational system reimagines the 

concept and deploys it on a massive scale on all 

wafers and on all features for which there are 

Review SEM images. The line itself is monitored not 

only for the traditional concept of defect, but also for 

the concept of pattern fidelity, which is in effect a 

“CD”-type measurement, but without the same level 

of measurement accuracy as a calibrated CD-SEM 

measurement. As such, inline continuous massive 

pattern fidelity measurement supplements the 

conventional CD-SEM operation [11]. It has the 

potential to provide much earlier warnings of 

pending problems by tracking changes or trends in 

pattern fidelity before they become bona fide defects. 

At the leading technology nodes, even small changes 

in pattern fidelity lead to significant electrical 

parasitics or parametric issues. A resistive via, for 

instance, may be caused by a slightly narrow and 

therefore partially blocked via that can impact device 

timing characteristics, produce single bit failures in 

memory devices, and produce various other 

parametric problems. Line thinning, line edge 

roughness, corner rounding, corner-to-corner 

artifacts, etc. are all liable to cause parametric issues. 

Anchor’s computational system performs 

massive pattern fidelity analysis on each image, but 

does so in a pattern-centric manner that searches 

each aligned SEM image for all patterns of interest 

or POI, measures their printed dimensions, compares 

them against the reference design, and stores all 

results in the Printed Pattern Database. 

Patterns-of-interest (POI) are based on one or 

more parametric search rules. POI can also be 

identified automatically from the Design 

Decomposition Database by searching for patterns 

with high risk scores. Here we provide an example 

based on parametric search. Tip-to-line is a common 

pattern-of-interest, in which the amount of gap 

between tip and line (among other parameters) may 

affect printability or pattern fidelity. 

In the example shown in Figure 11, we use a 

graphical user interface (GUI) to create a tip-to-line 

rule. We specify several constraints such as the 

maximum width of the tip, the minimum length of 

the tip, and the maximum gap between tip and line. 

We want the rule to match tips whose widths are less 

than 100nm, whose lengths are at least 40nm, and 

the gap is at most 100nm. 

This single rule will match all variations of tip-

to-line where the tip width is less than 100nm, the tip 

length is greater than 40nm, and the gap is less than 

100nm. When we run this rule against the two 

sample SEM images shown in Figure 12, we find a 

match where the reference tip-to-line gap (from 

design) is 64nm and another where the reference gap 

is 60nm. Once these patterns of interest (in blue) 

have been found, their printed sizes are measured 

either (a) from the image itself or (b) from the 

extracted contour. In the first example, the measured 
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Figure 11. Defining Tip-to-Line Rule with Parameters (Constraints). 

 

Figure 12. Two variations of tip-to-line matched by the parametric search rule. 

 

value is 67nm, and in the second, the measured value 

is 51nm. 

Because each SEM image is scanned from top 

to bottom, there might be tens or hundreds of 

matching patterns on each image. From a small set 

of sample images, we obtained the result as shown in 

Figure 13. 

In column 1 we see that the tip-to-line rule 

found 3 variations of the pattern: 

• Variation 1: Reference gap 60nm. Average 

of the printed gap was 58.67nm 

• Variation 2: Reference gap 64nm. Average 

of the printed gap was 61.50nm 

• Variation 3: Reference gap 71nm. Average 

of the printed gap was 62.50nm 

 

Litho/OPC and process engineers can examine 

this table to study the effects of gap size on the 

overall fidelity of the printed pattern. They can ask 

questions such as if the design or reference gap is 

reduced to X, how will that affect the printability of 

the pattern? Similarly, if the design or reference gap 

is enlarged to Y, how will that affect the printability 

of the pattern? In other words, the effects of specific 

variations in the physical layout can be studied in a 

comprehensive manner. 

This example also demonstrates the value of 

speaking the universal language of patterns. There 

are more examples shown in Figure 14 that 

demonstrate the potential of SEM images to reveal 

detailed analysis of process variation. Anchor’s 

computation system is like an “analog to digital” 

converter – it converts the rich information content 

of analog SEM images into concise digital design 

patterns while retaining all of the information 

associated with the analog print. 

When we expand the example by using (a) 

multiple parametric search rules and (b) hundreds or 

thousands of SEM images, we obtain a deep 

understanding of the process and its limitations. For 

(a) each pattern type (e.g. tip-to-line, tip-to-tip, etc.) 

and (b) each variation of each pattern type (e.g. tip-

to-line gaps of 60nm, 64nm, 71nm, etc.) we create a 

Box Plot that represents all of the measurements of 

that particular pattern variation. For instance, if we 

found and measured fifty tip-to-line patterns with 

intended gap of 60nm, we create a box plot that 

shows how close or how wide apart all of the 
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Figure 13. Sample measurement results of tip-to-line. 

 

 
Figure 14. Additional examples of various features being measured. 

 

Figure 15. Box Plot of Various Patterns as a Function of the Ratio of Printed Pattern Measurement to Intended 

Pattern Measurement. Values closer to 1:1 indicate strong patterns. 

 

individual measurements were, and how much those 

measurements deviated from the reference of 60nm. 

If we do the same for all patterns and their 

variations, we end up with a box plot as shown 

below. Each box represents the measurements of one 

specific pattern (e.g. tip-to-line with reference gap of 

60nm). In this example we see numerous patterns. 

Each box in a box plot shows several statistics 

about each specific pattern: the average and median 

values of all measurements, the range where most of 

the values are clustered, and outliers. It is a 

particularly effective way to identify weak and 

strong patterns, as shown in Figure 15. This 

particular box plot is based on the ratio of measured 

value to intended value. If the ratio is 1:1, it indicates 

a strong pattern because the measured values of all 

instances of that pattern matched the intended value. 

The more a box diverges from 1:1, the weaker the 

pattern. In this chart we see that the left half of 

patterns are printing well, with ratios close to 1, but 

the right half diverges significantly, indicating 

progressively weaker patterns. This automatically 

separates weak patterns from strong patterns, 

providing actionable information for root cause 

analysis. 

Although this chart shows a large collection of 

patterns, we can track the behavior of individual 

patterns as well. Given a particular pattern A, we can: 

• Build a box plot of its measurements by 

time and track the fidelity of pattern A day-by-day or 

week-by-week or before-and-after a mask or process 

revision.  

• Build a box plot of its measurements sorted 

by process tool ID (e.g. scanner 1 or scanner 2, or 

etcher 1 or etcher 2, or chamber 1 or chamber 2) for 

(a) tool matching purposes, (b) identification of 

problematic tool or chamber, or (c) process drift 

monitoring. 

• Build a box plot of its measurements by 

Focus / Exposure modulation on an PWQ or FEM 
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Figure 16. Conventional vs Anchor FEM Analysis [12]. 

 

 

wafer to study the subtle changes in the behavior of 

pattern A across F/E modulations. (See next section.) 

4.6. Innovative FEM/PWQ Analysis and Process 

Window Determination 

Lithography process window determination is a 

critical step in the setup and tuning of a scanner 

recipe. Two of the most significant recipe parameters 

are (a) focus offset and (b) exposure dose. Different 

patterns and different neighborhoods of those 

patterns are affected differently by focus and 

exposure settings, which are determined by exposing 

a reticle or mask using a series of focus and exposure 

modulations and analyzing the results of each 

modulation. 

The conventional method of analyzing 

Focus/Exposure Modulations (FEM) is by 

performing a high-sensitivity wafer inspection 

followed by a large SEM Review in which tens of 

thousands of SEM images are captured and analyzed 

for the presence of hard defects. The conventional 

method does not take pattern fidelity into account 

and therefore cannot track or report the subtle 

deviations that occur on each pattern across each 

modulation. Subtle deviations – pattern fidelity 

variations – are playing an increasingly significant 

role in parametric yield loss. Establishing a 

lithography process window that takes into account 

pattern fidelity (not just pattern defectivity) leads to 

a more robust result [12-15]. A side-by-side comparison 

of the process window map obtained by conventional 

method and by Anchor’s method is shown in Figure 

16. Anchor’s computational system redefines and 

reinvents FEM/PWQ analysis in the following ways: 

• The computational system checks every 

SEM image for the presence of die-to-database 

defects. Some of these defects are not detectable 

using conventional die-to-die or die-to-golden die 

techniques. Multiple defects can be detected on a 

single image. 

• The computational system measures every 

feature of interest in every SEM image (massive 

metrology) to generate pattern uniformity statistics 

for each pattern of interest. This enables pattern 

fidelity analysis. 

• The computational system tracks the 

uniformity of like patterns across each modulation to 

generate Bossung Curves automatically for hundreds 

or thousands or tens of thousands of patterns. These 

Bossung Curves supplement – not replace – 

conventional CD-SEM analysis because accuracy of 

measurements from Review SEM is limited. 

Nevertheless, these Bossung Curves are produced 

more quickly and cover a significantly wider set of 

patterns. They provide valuable early feedback. 

The combination of (a) better defect detection, 

(b) pattern uniformity/fidelity analysis, and (c) 

generation of Bossung Curves for a wide set of 

patterns results in the reinvention of PWQ/FEM 

analysis. 

4.7. Risk Assessment of New Tape-outs 

Historically, it has been difficult to 

comprehensively assess the yield risk of a new 

incoming device. This requires the device to be 

searched for known weak patterns in order for 

corrective action to be taken by Litho/OPC teams 

before the mask is made. 
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The Design Decomposition Database, in which 

all patterns of interest are ranked by a machine 

learning model built from real printed wafer images, 

enables comprehensive full-chip pattern risk 

assessment for new tape-outs. The new tape-out is 

decomposed into constituent patterns that are both (a) 

cross-referenced with existing patterns in the Design 

Decomposition Database and (b) assigned risk scores 

directly by the trained machine learning model. The 

new tape-out, therefore, is systematically evaluated 

for potential risk, and corrective action can be taken 

well in advance of printing the (expensive) masks. 

4.8. Large Scale in-wafer OPC Verification 

OPC simulations are standard practice in most 

fabs. They are based on complex and finely tuned 

models of the lithography column, and often take 

hours or days to run on a large cluster of computing 

nodes (servers). OPC simulations produce a report 

that grades the lithography risk of each pattern 

(including the neighborhood in which the pattern 

lies). Some patterns are clearly marked “weak”, 

others are “borderline weak”, and others might be 

“unknown”.  

An OPC result is a set of patterns and their risk 

assessments. But these patterns are very difficult to 

verify in the fab because once the reticle is printed, a 

digital-to-analog conversion has taken place. SEM 

images are analog bitmaps, and these images cannot 

be compared directly with the OPC simulation 

results. Instead, images (analog) must be converted 

back to patterns (digital). This analog-to-digital 

conversion is once again the basis for Anchor’s 

pattern-centric computational system. It allows 

thousands or millions of SEM images to be 

converted back into digital (pattern) representations 

that can finally be compared with OPC simulation 

results in a comprehensive manner to assess the 

validity of the OPC model. Specifically, we can 

answer such questions as: 

• If OPC simulation predicted a weak pattern, 

was that pattern actually weak? If we examine the 

box plot of that pattern, we can answer the question 

immediately. 

• If OPC simulation predicted a strong 

pattern, was that pattern actually strong? 

• Did OPC simulation fail to predict a weak 

pattern (alpha risk)? If so, results from Anchor’s 

computational system can be used to fine-tune the 

OPC model. 

5. Conclusion 

Anchor has developed a pattern-centric 

computational system for the fab that rests on the 

three pillars of (a) printed pattern database, (b) 

design decomposition database, and (c) machine 

learning. These pillars extract significantly richer 

information from the analog or printed wafer domain, 

convert it into the digital or pattern-based domain, 

and enable wide-ranging applications for yield 

learning, defect discovery, line monitoring, and 

design-process co-optimization. The computational 

system is vendor-neutral and has been adopted at 

multiple Tier-1 and Tier-2 fabs around the world. 
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